SUPPLEMENT

Sumphonic SYLVANIA (D) DHERERERTD SERVICE MANUAL

Subject: Change of IF Signal Process IC

This service manual supplement is for the ST413E/ 6413TE/DWT1304/ST419E/6419TE changed IC model, which are different from the previous ST413E/ 6413TE/DWT1304/ST419E/6419TE model. For the ST413E/6413TE/DWT1304/ST419E/6419TE changed IC model, an "A" has been added to the end of the model number on rating label in the rear. Refer to the rating label illustration at right.
This service manual shows only the differences between the model ST413E/6413TE/DWT1304/

Example: ST419E
Rating label

Suffix "A" ST419E/6419TE changed IC model and the previous ST413E/6413TE/DWT1304/ ST419E/6419TE model. All other information is described in the service manual of the previous ST413E/6413TE/DWT1304/ST419E/6419TE model.

13" COLOR TELEVISION ST413E/6413TE

19" COLOR TELEVISION ST419E/6419TE

IMPORTANT SAFETY NOTICE

Proper service and repair is important to the safe, reliable operation of all Funai Equipment. The service procedures recommended by Funai and described in this service manual are effective methods of performing service operations. Some of these service special tools should be used when and as recommended.

It is important to note that this service manual contains various CAUTIONS and NOTICES which should be carefully read in order to minimize the risk of personal injury to service personnel. The possibility exists that improper service methods may damage the equipment. It also is important to understand that these CAUTIONS and NOTICES ARE NOT EXHAUSTIVE. Funai could not possibly know, evaluate and advice the service trade of all conceivable ways in which service might be done or of the possible hazardous consequences of each way. Consequently, Funai has not undertaken any such broad evaluation. Accordingly, a servicer who uses a service procedure or tool which is not recommended by Funai must first use all precautions thoroughly so that neither his safety nor the safe operation of the equipment will be jeopardized by the service method selected.

TABLE OF CONTENTS

Block Diagrams 1-1
Schematic Diagrams / CBA's and Test Points 2-1
ST413E changed IC model
Different parts from the previous version model (ST413E) 3-1
6413TE changed IC model
Different parts from the previous version model (6413TE) 3-1
DWT1304 changed IC model
Different parts from the previous version model (DWT1304) 3-1
ST419E changed IC model
Different parts from the previous version model (ST419E) 3-2
6419TE changed IC model
Different parts from the previous version model (6419TE) 3-2

BLOCK DIAGRAMS

IF/Video/System Control Block Diagram

SCHEMATIC DIAGRAMS / CBA'S AND TEST POINTS

Standard Notes

Many electrical and mechanical parts in this chassis have special characteristics. These characteristics often pass unnoticed and the protection afforded by them cannot necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts that have these special safety characteristics are identified in this manual and its supplements; electrical components having such features are identified by the mark " \mathbf{A} " in the schematic diagram and the parts list. Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts that do not have the same safety characteristics as specified in the parts list may create shock, fire, or other hazards.

Note:

1. Do not use the part number shown on these drawings for ordering. The correct part number is shown in the parts list, and may be slightly different or amended since these drawings were prepared.
2. All resistance values are indicated in ohms ($\mathrm{K}=10^{3}, \mathrm{M}=10^{6}$).
3. Resistor wattages are $1 / 4 \mathrm{~W}$ or $1 / 6 \mathrm{~W}$ unless otherwise specified.
4. All capacitance values are indicated in $\mu \mathrm{F}\left(\mathrm{P}=10^{-6} \mu \mathrm{~F}\right)$.
5. All voltages are DC voltages unless otherwise specified.

Note of Capacitors:

ML --- Mylar Cap. PP --- Metallized Film Cap. SC --- Semiconductor Cap. L --- Low Leakage type
Temperature Characteristics of Capacitors are noted with the following:
B $-- \pm 10 \% \quad \mathrm{CH}---0 \pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \quad \mathrm{CSL}---+350 \sim-1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tolerance of Capacitors are noted with the following:
Z --- +80~-20\%

Note of Resistors:

CEM --- Cement Res. MTL --- Metal Res. F --- Fuse Res.

Capacitors and transistors are represented by the following symbols.

LIST OF CAUTION, NOTES, AND SYMBOLS USED IN THE SCHEMATIC DIAGRAMS ON THE FOLLOWING PAGES:

1. CAUTION: FOR CONTINUED PROTECTION AGAINST RISK OF FIRE, REPLACE ONLY WITH SAME TYPE_A,_V FUSE.
ATTENTION: UTILISER UN FUSIBLE DE RECHANGE DE MÊME TYPE DE_A,_V.

2. CAUTION:

Fixed Voltage (or Auto voltage selectable) power supply circuit is used in this unit.
If Main Fuse (F601) is blown, first check to see that all components in the power supply circuit are not defective before you connect the AC plug to the AC power supply. Otherwise it may cause some components in the power supply circuit to fail.
3. Note:
(1) Do not use the part number shown on the drawings for ordering. The correct part number is shown in the parts list, and may be slightly different or amended since the drawings were prepared.
(2) To maintain original function and reliability of repaired units, use only original replacement parts which are listed with their part numbers in the parts list section of the service manual.

4. Wire Connectors

(1) Prefix symbol "CN" means "connector" (can disconnect and reconnect).
(2) Prefix symbol "CL" means "wire-solder holes of the PCB" (wire is soldered directly).
5. Voltage indications on the schematics are as shown below:

Plug the TV power cord into a standard AC outlet.:

Indicates that the voltage is not consistent here.

Unit: Volts

6. How to read converged lines

1-D3

7. Test Point Information

(1) : Indicates a test point with a jumper wire across a hole in the PCB.
\square : Used to indicate a test point with a component lead on foil side.
: Used to indicate a test point with no test pin.

- Used to indicate a test point with a test pin.

CAUTION!
Fixed voltage (or Auto voltage selectable) power supply circuit is used in this unit, If Main Fuse (F601) is blown, check to see that all components in the power supply Otherwise it may cause some components in the pow touply circuit to fail.

CAUTION !: For continued protection against risk of fire replace only with same type $4 \mathrm{~A}, 125 \mathrm{~V}$ fuse

NOTE:
The voltage for parts in hot circuit is measured using hot GND as a common terminal.

ATTENTION : Utiliser un fusible de rechange de même type de $4 \mathrm{~A}, 125 \mathrm{~V}$.

Main CBA Top View

CAUTION!
Fixed voltage (or Auto voltage selectable) power supply circuit is used in this unit. If Main Fuse (F601) is blown, check to see that all components in the power supply circuit are not defective before you connect the AC plug to the AC power supply. Otherwise it may cause some components in the power supply circuit to fail.
$4 \mathrm{~A} / 125 \mathrm{~V}$

CAUTION !: For continued protection against risk of fire, For continued protection against risk of fire,
replace only with same type $4 \mathrm{~A}, 125 \mathrm{~V}$ fuse ATTENTION : Utiliser un fusible de rechange de même type de $4 \mathrm{~A}, 125 \mathrm{~V}$.

NOTE:

The voltage for parts in hot circuit is measured using hot GND as a common terminal.

Because a hot chassis ground is present in the power supply circuit, an isolation transformer must be used. Also, in order to have the ability to increase the input slowly,when troubleshooting this type power supply circuit, a variable isolation transformer is required.
MAIN CBA

Ref No.	Position
ICS	
IC31	B-1
IC111	D-1
IC151	E-2
IC551	B-2
IC601	C-4
IC801	E-1
TRANSISTORS	
Q31	C-1
Q111	E-2
Q321	C-1
Q571	B-3
Q572	B-2
Q601	B-4
Q602	B-4
Q662	C-3
Q671	C-3
Q675	C-2
Q676	C-2
Q681	D-3
Q682	D-3
Q683	D-3
CONNECTORS	
CN571	A-3
CN691	C-4
CN801	D-1
WH301A	C-2
WH501A	A-2
TEST POINTS	
TP300	A-3
TP601	A-4
VARIABLE RESISTOR	
VR661	A-1

VR661

+BADJ

CAUTION !
Fixed voltage (or Auto voltage selectable) power supply circuit is used in this unit. if Main Fuse (F601) is blown, check to see that all components in the power supply Otherwise it may cause some components in the power supply circuit to fail.

CAUTION!:
For continued protection against risk of fir replace only with same type $4 \mathrm{~A}, 125 \mathrm{~V}$ fuse,
4A/125V ATTENTION : Utiliser un fusible de rechange de même type de 4A, 125V
NOTE:
The voltage for parts in hot circuit is measured using
The voltage for parts in hot circuit
hot GND as a common terminal.

ST413E changed IC model

Different parts from the previous version model (ST413E)

Ref. No.	Description	Part No.
MECHANICAL PARTS		
A4A	RATING LABEL L2200XA	----------
S6	SERIAL NO. LABEL L2200XA	----------
ELECTRICAL PARTS		
	MMA CBA	0ESA05976
	MAIN CBA	----------
C38	Not Used	
C609	CERAMIC CAP. B K 1000pF/2KV	CCD3DKD0B102
IC31	IC:VIF/SIF M61113FP TFOG	QSZBA0SHT035
R384	CHIP RES.(1608) 1/10W J 12k Ω	RRXAJB5Z0123
R132	Not Used	

6413TE changed IC model

Different parts from the previous version model (6413TE)

Ref. No.	Description	Part No.
MECHANICAL PARTS		
A4A	RATING LABEL L2201XB	----------
S6	SERIAL NO. LABEL L2201XB	----------
ELECTRICAL PARTS		
	MMA CBA	0ESA05976
	MAIN CBA	----------
C38	Not Used	
C609	CERAMIC CAP. B K 1000pF/2KV	CCD3DKD0B102
IC31	IC:VIF/SIF M61113FP TFOG	QSZBA0SHT035
R38A	CHIP RES.(1608) 1/10W J 12k Ω	RRXAJB5Z0123
R132	Not Used	

DWT1304 changed IC model

Different parts from the previous version model (DWT1304)

Ref. No.	Description	Part No.
MECHANICAL PARTS		
A4A	RATING LABEL L2204XE	---------
S6	SERIAL NO. LABEL L2204XE	----------
ELECTRICAL PARTS		
	MMA CBA	OESA05976
	MAIN CBA	----------
C38	Not Used	
C609	CERAMIC CAP. B K 1000pF/2KV	CCD3DKD0B102
IC31	IC:VIF/SIF M61113FP TFOG	QSZBA0SHT035
R384	CHIP RES.(1608) 1/10W J 12k Ω	RRXAJB5Z0123
R132	Not Used	

ST419E changed IC model

Different parts from the previous version model (ST419E)

Ref. No.	Description	Part No.
MECHANICAL PARTS		
A4A	RATING LABEL L2300XA	----------
S6	SERIAL NO. LABEL L2300XA	---------
ELECTRICAL PARTS		
	MMA CBA	0ESA05979
	MAIN CBA	----------
C38	Not Used	
C609	CERAMIC CAP. B K 1000pF/2KV	CCD3DKD0B102
IC31	IC:VIF/SIF M61113FP TFOG	QSZBAOSHT035
R38A	CHIP RES.(1608) 1/10W J 12k Ω	RRXAJB5Z0123
R132	Not Used	

6419TE changed IC model

Different parts from the previous version model (6419TE)

Ref. No.	Description	Part No.
MECHANICAL PARTS		
A4A	RATING LABEL L2301XB	----------
S6	SERIAL NO. LABEL L2301XB	--------
ELECTRICAL PARTS		
	MMA CBA	OESA05979
	MAIN CBA	----------
C38	Not Used	
C609	CERAMIC CAP. B K 1000pF/2KV	CCD3DKD0B102
IC31	IC:VIF/SIF M61113FP TF0G	QSZBA0SHT035
R38A	CHIP RES.(1608) 1/10W J 12k Ω	RRXAJB5Z0123
R132	Not Used	

ros FUNAI Sumphonic

SYLVANIA

SERVICE MANUAL

13" COLOR TELEVISION

ST413A/F413TA/6413TA

IMPORTANT SAFETY NOTICE

Proper service and repair is important to the safe, reliable operation of all Funai Equipment. The service procedures recommended by Funai and described in this service manual are effective methods of performing service operations. Some of these service special tools should be used when and as recommended.

It is important to note that this service manual contains various CAUTIONS and NOTICES which should be carefully read in order to minimize the risk of personal injury to service personnel. The possibility exists that improper service methods may damage the equipment. It also is important to understand that these CAUTIONS and NOTICES ARE NOT EXHAUSTIVE. Funai could not possibly know, evaluate and advice the service trade of all conceivable ways in which service might be done or of the possible hazardous consequences of each way. Consequently, Funai has not undertaken any such broad evaluation. Accordingly, a servicer who uses a service procedure or tool which is not recommended by Funai must first use all precautions thoroughly so that neither his safety nor the safe operation of the equipment will be jeopardized by the service method selected.

TABLE OF CONTENTS

Specifications 1-1
Important Safety Precautions 2-1
Standard Notes for Servicing 3-1
Cabinet Disassembly Instructions 4-1
Electrical Adjustment Instructions 5-1
Block Diagram 6-1
Schematic Diagram / CBA's and Test Points 7-1
Schematic Diagram 7-3
CBA Views and Test Points 7-9
Wave Forms 8-1
Wiring Diagram 9-1
IC Pin Fuction. 10-1
Cabinet Exploded View 11-1
Packing Exploded View 11-3
Mechanical Parts List 12-1
Electrical Parts List 13-1

SPECIFICATIONS

< TUNER>

ANT. Input ------------------------- 750hm Unbal., F typeReference Level ---------------- 400 Hz (CRT Green Cathode)Test Input Signal ---- modulation

Test Input Signal ---------------- $400 \mathrm{~Hz} 30 \%$ modulation

Description	Condition	Unit	Nominal	Limit
1. Intermediate Freq.	Picture	MHz	45.75	-
2. Peak Picture Sens	Sound	MHz	41.25	-
	VHF	$\mathrm{dB} \mu \mathrm{V}$	15	30
	CATV	$\mathrm{dB} \mathrm{\mu V}$	15	30
3. AFT Pull In Range (10mV input)	UHF	$\mathrm{dB} \mathrm{\mu V}$	15	40

< DEFLECTION>

Description	Condition	Unit	Nominal	Limit
1. Deflection Freq.	Horizontal	KHz	15.734	-
2. Linearity	Vertical	Hz	60	-
	Horizontal	$\%$	-	± 15
3. Over Scan	Vertical	$\%$	± 10	
4. High Voltage	-	$\%$	10	-

< VIDEO \& CHROMA>

Description	Condition	Unit	Nominal	Limit
1. Misconvergence	Center	mm	-	0.3
	Side	mm	-	1.2
	Corner	mm	-	1.5
2. Brightness	APL 100%	$\mathrm{Ft}-\mathrm{L}$	60	40
3. Color Temperature	-	${ }^{\circ} \mathrm{K}$	$9200{ }^{\circ} \mathrm{K}$	-
4. Resolution	Horizontal	Line	250	-
	Vertical	Line	300	-

<AUDIO>
All items are measured across 8Ω load at speaker output terminal.

Description	Condition	Unit	Nominal	Limit
1. Audio Output Power	$10 \% \mathrm{THD}$	W	1	0.8
2. Audio Distortion (w/LPF)	500 mW	$\%$	2	7
3. Audio Freq. Response	-3 dB	Hz	$70 \sim 11 \mathrm{~K}$	-

Note:

Nominal specifications represent the design specifications. All units should be able to approximate these. Some will exceed and some may drop slightly below these specifications. Limit specifications represent the absolute worst condition that still might be considered acceptable. In no case should a unit fail to meet limit specifications.

IMPORTANT SAFETY PRECAUTIONS

Prior to shipment from the factory, our products are strictly inspected for recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Safety Precautions for TV Circuit

1. Before returning an instrument to the cus-

 tomer, always make a safety check of the entire instrument, including, but not limited to, the following items:a. Be sure that no built-in protective devices are defective and have been defeated during servicing. (1) Protective shields are provided on this chassis to protect both the technician and the customer. Correctly replace all missing protective shields, including any removed for servicing convenience. (2) When reinstalling the chassis and/or other assembly in the cabinet, be sure to put back in place all protective devices, including but not limited to, nonmetallic control knobs, insulating fishpapers, adjustment and compartment covers/shields, and isolation resistor/capacitor networks. Do not operate this instrument or permit it to be operated without all protective devices correctly installed and functioning. Servicers who defeat safety features or fail to perform safety checks may be liable for any resulting damage.
b. Be sure that there are no cabinet openings through which an adult or child might be able to insert their fingers and contact a hazardous voltage. Such openings include, but are not limited to, (1) spacing between the picture tube and the cabinet mask, (2) excessively wide cabinet ventilation slots, and (3) an improperly fitted and/or incorrectly secured cabinet back cover.
c. Antenna Cold Check - With the instrument AC plug removed from any AC source, connect an electrical jumper across the two AC plug prongs. Place the instrument AC switch in the on position. Connect one lead of an ohmmeter to the AC plug prongs tied together and touch the other ohmmeter lead in turn to each tuner antenna input exposed terminal screw and, if applicable, to the coaxial connector. If the measured resistance is less than 1.0 megohm or greater than 5.2 megohm, an abnormality exists that must be corrected before the instrument is returned to the customer. Repeat this test with the instrument AC switch in the off position.
d. Leakage Current Hot Check - With the instrument completely reassembled, plug the AC line cord directly into a 120 V AC outlet. (Do not use an isolation transformer during this test.) Use a leakage
current tester or a metering system that complies with American National Standards Institute (ANSI) C101.1 Leakage Current for Appliances and Underwriters Laboratories (UL) 1410, (50.7). With the instrument $A C$ switch first in the on position and then in the off position, measure from a known earth ground (metal water pipe, conduit, etc.) to all exposed metal parts of the instrument (antennas, handle brackets, metal cabinet, screw heads, metallic overlays, control shafts, etc.), especially any exposed metal parts that offer an electrical return path to the chassis. Any current measured must not exceed 0.5 milli-ampere. Reverse the instrument power cord plug in the outlet and repeat the test.

ANY MEASUREMENTS NOT WITHIN THE LIMITS SPECIFIED HEREIN INDICATE A POTENTIAL SHOCK HAZARD THAT MUST BE ELIMINATED before returning the instrument to the customer or before connecting THE ANTENNA OR ACCESSORIES.
e. X-Radiation and High Voltage Limits - Because the picture tube is the primary potential source of X -radiation in solid-state TV receivers, it is specially constructed to prohibit X-radiation emissions. For continued X-radiation protection, the replacement picture tube must be the same type as the original. Also, because the picture tube shields and mounting hardware perform an X -radiation protection function, they must be correctly in place. High voltage must be measured each time servicing
is performed that involves $\mathrm{B}+$, horizontal deflection or high voltage. Correct operation of the X -radiation protection circuits also must be reconfirmed each time they are serviced. (X-radiation protection circuits also may be called "horizontal disable" or "hold down.") Read and apply the high voltage limits and, if the chassis is so equipped, the X -radiation protection circuit specifications given on instrument labels and in the Product Safety \& X-Radiation Warning note on the service data chassis schematic. High voltage is maintained within specified limits by close tolerance safety-related components/adjustments in the high-voltage circuit. If high voltage exceeds specified limits, check each component specified on the chassis schematic and take corrective action.
2. Read and comply with all caution and safety-related notes on or inside the receiver cabinet, on the receiver chassis, or on the picture tube.
3. Design Alteration Warning - Do not alter or add to the mechanical or electrical design of this TV receiver. Design alterations and additions, including, but not limited to circuit modifications and the addition of items such as auxiliary audio and/or video output connections, might alter the safety characteristics of this receiver and create a hazard to the user. Any design alterations or additions will void the manufacturer's warranty and may make you, the servicer, responsible for personal injury or property damage resulting therefrom.

4. Picture Tube Implosion Protection Warning

- The picture tube in this receiver employs integral implosion protection. For continued implosion protection, replace the picture tube only with one of the same type number. Do not remove, install, or otherwise handle the picture tube in any manner without first putting on shatterproof goggles equipped with side shields. People not so equipped must be kept sately away while picture tubes are handled. Keep the picture tube away from your body. Do not handle the picture tube by its neck. Some "in-line" picture tubes are equipped with a permanently attached deflection yoke; because of potential hazard, do not try to remove such "permanently attached" yokes from the picture tube.

5. Hot Chassis Warning -

a. Some TV receiver chassis are electrically connected directly to one conductor of the AC power cord and may be safety-serviced without an isolation transformer only if the AC power plug is inserted so that the chassis is connected to the ground side of the AC power source. To confirm that the AC power plug is inserted correctly, with an AC voltmeter, measure between the chassis and a known earth
ground. If a voltage reading in excess of 1.0 V is obtained, remove and reinsert the AC power plug in the opposite polarity and again measure the voltage potential between the chassis and a known earth ground.
b. Some TV receiver chassis normally have 85 V AC(RS) between chassis and earth ground regardless of the AC plug polarity. This chassis can be safety-serviced only with an isolation transformer inserted in the power line between the receiver and the AC power source, for both personnel and test equipment protection.
c. Some TV receiver chassis have a secondary ground system in addition to the main chassis ground. This secondary ground system is not isolated from the $A C$ power line. The two ground systems are electrically separated by insulation material that must not be defeated or altered.
6. Observe original lead dress. Take extra care to assure correct lead dress in the following areas: a. near sharp edges, b. near thermally hot parts-be sure that leads and components do not touch thermally hot parts, c. the AC supply, d. high voltage, and e. antenna wiring. Always inspect in all areas for pinched, out of place, or frayed wiring. Check AC power cord for damage.
7. Components, parts, and/or wiring that appear to have overheated or are otherwise damaged should be replaced with components, parts, or wiring that meet original specifications. Additionally, determine the cause of overheating and/or damage and, if necessary, take corrective action to remove any potential safety hazard.
8. Product Safety Notice - Some electrical and mechanical parts have special safety-related characteristics which are often not evident from visual inspection, nor can the protection they give necessarily be obtained by replacing them with components rated for higher voltage, wattage, etc.. Parts that have special safety characteristics are identified by a (\mathbf{A}) on schematics and in parts lists. Use of a substitute replacement that does not have the same safety characteristics as the recommended replacement part might create shock, fire, and/or other hazards. The Product's Safety is under review continuously and new instructions are issued whenever appropriate. Prior to shipment from the factory, our products are strictly inspected to confirm with the recognized product safety and electrical codes of the countries in which they are to be sold. However, in order to maintain such compliance, it is equally important to implement the following precautions when a set is being serviced.

Precautions during Servicing

A. Parts identified by the (A) symbol are critical for safety.
Replace only with part number specified.
B. In addition to safety, other parts and assemblies are specified for conformance with regulations applying to spurious radiation. These must also be replaced only with specified replacements.
Examples: RF converters, RF cables, noise blocking capacitors, and noise blocking filters, etc.
C. Use specified internal wiring. Note especially:

1) Wires covered with PVC tubing
2) Double insulated wires
3) High voltage leads
D. Use specified insulating materials for hazardous live parts. Note especially:
4) Insulation Tape
5) PVC tubing
6) Spacers
7) Insulators for transistors.
E. When replacing AC primary side components (transformers, power cord, etc.), wrap ends of wires securely about the terminals before soldering.
F. Observe that the wires do not contact heat producing parts (heatsinks, oxide metal film resistors, fusible resistors, etc.)
G. Check that replaced wires do not contact sharp edged or pointed parts.
H. When a power cord has been replaced, check that $5 \sim 6 \mathrm{~kg}$ of force in any direction will not loosen it.
I. Also check areas surrounding repaired locations.
J. Use care that foreign objects (screws, solder droplets. etc.) do not remain inside the set.
K. Crimp type wire connector

The power transformer uses crimp type connectors which connect the power cord and the primary side of the transformer. When replacing the transformer, follow these steps carefully and precisely to prevent shock hazards.
Replacement procedure

1) Remove the old connector by cutting the wires at a point close to the connector. Important: Do not re-use a connector (discard it).
2) Strip about 15 mm of the insulation from the ends of the wires. If the wires are stranded, twist the strands to avoid frayed conductors.
3) Align the lengths of the wires to be connected. Insert the wires fully into the connector.
4) Use the crimping tool to crimp the metal sleeve at the center position. Be sure to crimp fully to the complete closure of the tool.
L. When connecting or disconnecting the internal connectors, first, disconnect the AC plug from the AC supply outlet.

Safety Check after Servicing

Examine the area surrounding the repaired location for damage or deterioration. Observe that screws, parts and wires have been returned to original positions. Afterwards, perform the following tests and confirm the specified values in order to verify compliance with safety standards.

1. Clearance Distance

When replacing primary circuit components, confirm specified clearance distance (d) and (d') between soldered terminals, and between terminals and surrounding metallic parts. (See Fig. 1)

Table 1 : Ratings for selected area

AC Line Voltage	Region	Clearance Distance (d) (d')
110 to 130 V	USA or	$\geq 3.2 \mathrm{~mm}$
	CANADA	$(0.126$ inches)

Note: This table is unofficial and for reference only. Be sure to confirm the precise values.

2. Leakage Current Test

Confirm the specified (or lower) leakage current between B (earth ground, power cord plug prongs) and externally exposed accessible parts (RF terminals, antenna terminals, video and audio input and output terminals, microphone jacks, earphone jacks, etc.) is lower than or equal to the specified value in the table below.

Measuring Method: (Power ON)

Insert load Z between B (earth ground, power cord plug prongs) and exposed accessible parts. Use an AC voltmeter to measure across both terminals of load Z. See Fig. 2 and following table.

Fig. 1

Fig. 2

Table 2 : Leakage current ratings for selected areas

AC Line Voltage	Region	Load Z	Leakage Current (i)	Earth Ground (B) to:
110 to 130 V	USA	$0.15 \mu \mathrm{~F} \mathrm{CAP} \&$. $1.5 \mathrm{k} \Omega$ RES. connected in parallel	$i \leq 0.5 \mathrm{~mA} \mathrm{rms}$	Exposed accessible parts

Note: This table is unofficial and for reference only. Be sure to confirm the precise values.

STANDARD NOTES FOR SERVICING

Circuit Board Indications

a. The output pin of the 3 pin Regulator ICs is indicated as shown.

b. For other ICs, pin 1 and every fifth pin are indicated as shown.

10
c. The 1st pin of every male connector is indicated as shown.

How to Remove / Install Flat Pack-IC

1. Removal

With Hot-Air Flat Pack-IC Desoldering Machine:

(1) Prepare the hot-air flat pack-IC desoldering machine, then apply hot air to the Flat Pack-IC (about 5 to 6 seconds). (Fig. S-1-1)

(2) Remove the flat pack-IC with tweezers while applying the hot air.
(3) Bottom of the flat pack-IC is fixed with glue to the CBA; when removing entire flat pack-IC, first apply soldering iron to center of the flat pack-IC and heat up. Then remove (glue will be melted). (Fig. S-1-6)
(4) Release the flat pack-IC from the CBA using tweezers. (Fig. S-1-6)

Caution:

1. Do not supply hot air to the chip parts around the flat pack-IC for over 6 seconds because damage to the chip parts may occur. Put masking tape around the flat pack-IC to protect other parts from damage. (Fig. S-1-2)
2. The flat pack-IC on the CBA is affixed with glue, so be careful not to break or damage the foil of each pin or the solder lands under the IC when removing it.

With Soldering Iron:

(1) Using desoldering braid, remove the solder from all pins of the flat pack-IC. When you use solder flux which is applied to all pins of the flat pack-IC, you can remove it easily. (Fig. S-1-3)

Fig. S-1-3
(2) Lift each lead of the flat pack-IC upward one by one, using a sharp pin or wire to which solder will not adhere (iron wire). When heating the pins, use a fine tip soldering iron or a hot air desoldering machine. (Fig. S-1-4)

(3) Bottom of the flat pack-IC is fixed with glue to the CBA; when removing entire flat pack-IC, first apply soldering iron to center of the flat pack-IC and heat up. Then remove (glue will be melted). (Fig. S-1-6)
(4) Release the flat pack-IC from the CBA using tweezers. (Fig. S-1-6)

With Iron Wire:

(1) Using desoldering braid, remove the solder from all pins of the flat pack-IC. When you use solder flux which is applied to all pins of the flat pack-IC, you can remove it easily. (Fig. S-1-3)
(2) Affix the wire to a workbench or solid mounting point, as shown in Fig. S-1-5.
(3) While heating the pins using a fine tip soldering iron or hot air blower, puil up the wire as the solder melts so as to lift the IC leads from the CBA contact pads as shown in Fig. S-1-5.
(4) Bottom of the flat pack-IC is fixed with glue to the CBA; when removing entire flat pack-IC, first apply
soldering iron to center of the flat pack-IC and heat up. Then remove (glue will be melted). (Fig. S-1-6)
(5) Release the flat pack-IC from the CBA using tweezers. (Fig. S-1-6)

Note:

When using a soldering iron, care must be taken to ensure that the flat pack-IC is not being held by glue. When the flat pack-IC is removed from the CBA, handle it gently because it may be damaged if force is applied.

Fig. S-1-5

Fig. S-1-6

2. Installation

(1) Using desoldering braid, remove the solder from the foil of each pin of the flat pack-IC on the CBA so you can install a replacement flat pack-IC more easily.
(2) The " " mark on the flat pack-IC indicates pin 1. (See Fig. S-1-7.) Be sure this mark matches the 1 on the PCB when positioning for installation. Then pre-solder the four corners of the flat pack-IC. (See Fig. S-1-8.)
(3) Solder all pins of the flat pack-IC. Be sure that none of the pins have solder bridges.

Example:

Pin 1 of the Flat Pack-IC
is indicated by a " " mark.
Fig. S-1-7

Fig. S-1-8

Instructions for Handling Semiconductors

Electrostatic breakdown of the semiconductors may occur due to a potential difference caused by electrostatic charge during unpacking or repair work.

1. Ground for Human Body

Be sure to wear a grounding band $(1 \mathrm{M} \Omega)$ that is properly grounded to remove any static electricity that may be charged on the body.

2. Ground for Workbench

Be sure to place a conductive sheet or copper plate with proper grounding ($1 \mathrm{M} \Omega$) on the workbench or other surface, where the semiconductors are to be placed. Because the static electricity charge on clothing will not escape through the body grounding band, be careful to avoid contacting semiconductors with your clothing.

CABINET DISASSEMBLY INSTRUCTIONS

1. Disassembly Flowchart

This flowchart indicates the disassembly steps for the cabinet parts, and the CBA in order to gain access to item(s) to be serviced. When reassembling, follow the steps in reverse order. Bend, route and dress the cables as they were.

Caution!

When removing the CRT, be sure to discharge the Anode Lead of the CRT with the CRT Ground Wire before removing the Anode Cap.

2. Disassembly Method

Step/ Loc. No.	Part	Fig. No.				Removal Remove/*unlock/ release/unplug/ unclamp/desolder	Note
	Rear Cabinet	1,2	$6($ S-1)	1			
$[2]$	CRT CBA	4,5	CN501	2			
$[3]$	Main CBA	3,5	CN571	3			
$[4]$	CRT	4	4 (S-2), Anode Cap	4			
\downarrow	\downarrow	\downarrow	\downarrow				
(1)	(2)	(3)	(4)	(5)			

Note:

(1). Order of steps in procedure. When reassembling, follow the steps in reverse order.
These numbers are also used as the Identification (location) No. of parts in figures.
(2). Parts to be removed or installed.
(3). Fig. No. showing procedure of part location
(4). Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or desoldered.
$\mathrm{S}=$ Screw, $\mathrm{P}=$ Spring, $\mathrm{L}=$ Locking Tab, $\mathrm{CN}=$ Connector, *=Unhook, Unlock, Release, Unplug, or Desolder
2(S-2) = two Screws (S-2)
(5). Refer to the following "Reference Notes in the Table."

Reference Notes in the Table

1. Removal of the Rear Cabinet. Remove screws 6(S-1) then slide the Rear Cabinet backward.
2. Removal of the CRT CBA. Disconnect CN501 then pull the CRT CBA backward.
3. Removal of the Main CBA. Disconnect CN571 on the Main CBA then slide the Main CBA backward.

Caution!

Discharge the Anode Lead of the CRT with the CRT Ground Wire before removing the Anode Cap.
4. Removal of the CRT. Remove screws 4(S-2) and Anode Cap. then slide the CRT backward.

Fig. 1

Fig. 2

TV Cable Wiring Diagram

ELECTRICAL ADJUSTMENT INSTRUCTIONS

General Note:

"CBA" is abbreviation for " Circuit Board Assembly".

NOTE:

Electrical adjustments are required after replacing circuit components and certain mechanical parts.

It is important to perform these adjustments only after all repairs and replacements have been completed.
Also, do not attempt these adjustments unless the proper equipment is available.

Test Equipment Required

1. NTSC Pattern Generator (Color Bar W/White Window, Red Color, Dot Pattern, Gray Scale, Monoscope, Multi-Burst)
2. DC Voltmeter
3. Oscilloscope: Dual-trace with 10:1 probe,

V-Range: 0.001~50V/Div,
F-Range: DC~AC-60MHz
4. Plastic Tip Driver
5. Remote control unit: Part No. N0105UD
6. DC power supply $13.2 \mathrm{~V} / 5 \mathrm{~A}$

How to make Service remote control unit:

1. Prepare normal remote control unit. (Part No. N0105UD) Remove 3 Screws from the back lid. (Fig. 1-1)
2. Add J1 (Jumper Wire) to the remote control CBA.

(Fig. 1-2)

How to set up the service mode:

Service mode:

1. Use the service remote control unit.
2. Turn the power on. (Use main power on the TV unit.)
3. Press " SLEEP " button on the service remote control unit. (Version of micro computer will display on the CRT. (Ex: 174-0.10 or 175-0.17)

1. DC 105V Adjustment

Purpose: To obtain correct operation.
Symptom of Misadjustment: The picture is dark and the unit does not operate correctly.

Test Point	Adj. Point	Mode	Input
J305 (+114V) J300 (GND)	VR661	---	---
Tape	M. EQ.	Spec.	
--	DC Voltmeter	$+114 \pm 0.5 \mathrm{~V}$ DC.	

Note: J300, J305(GND), VR661 --- Main CBA

1. Connect DC Volt Meter to J305 and J300(GND).
2. Adjust VR661 so that the voltage of J305 becomes $+105 \pm 0.5 \mathrm{~V}$ DC.

2. Black Strech Control Adjustment

Purpose: To show the fine black color.
Symptom of Misadjustment: Black color will not appear correctly.
Note: Use Service remote control unit.

1. Enter the Service mode. (See page 5-1)
2. Press " 6 " button on the Service remote control unit.
3. Press " $\mathrm{CH} \boldsymbol{A} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit so that display will change " OFF ", " 1 ", " 2 " and " 3 ". Then choose " OFF ".
If the version of micro computer is 175-0.17 perform following steps as an additional adjustment.
4. Enter the Service mode. (See page 5-1)
5. Press " 6 " button on the Service remote control unit.
6. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit so that display will change "B-S*1", " B-S*2 ". Select " B-S*2 " and choose " 0 ".
7. Turn the power off and on again. (Main power button on the TV unit.)

3-1. Setting for OSD D/A, V-TINT, 9 V and STEREO data Values

If the version of micro computer is " 174-0.10 " perform the following steps below.

General

1. Enter the Service mode. (See page 5-1)
2. Press " VOL \mathbf{A} " button on the Service remote control unit. Display changes " OSD D/A ", " C/D ", " V-TINT ", " VCO ", " 9V " and " STEREO " cyclically when "VOL $\boldsymbol{\Delta}$ " button is pressed.

OSD D/A

1. Press " VOL \boldsymbol{A} " button on the Service remote control unit. Then select OSD D/A display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit. Then choose OSD D/A=ANA.

V-TINT

1. Press " VOL \boldsymbol{A} " button on the Service remote control unit. Then select V-TINT display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control so that the value of V-TINT becomes 63.

9V

1. Press " VOL \boldsymbol{A} " button on the Service remote control unit. Then select 9 V display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit. Then choose 9V=OFF.

STEREO

1. Press " VOL \mathbf{A} " button on the Service remote control unit. Then select STEREO display.
2. Press " $\mathrm{CH} \boldsymbol{\wedge} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit. Then choose STEREO=OFF.

Note: There is no need to adjust C/D and VCO data values at this moment.

3-2. Setting for OSD D/A, AFC 2, 9 V and STEREO data Values

If the version of micro computer is " 175-0.17 " perform the following steps.

General

1. Enter the Service mode. (See page 5-1)
2. Press " VOL $\mathbf{\Delta}$ " button on the Service remote control unit. Display changes " OSD D/A ", " C/D ", " AFC 2 ", " VCO ", " 9V " and " STEREO " cyclically when "VOL $\boldsymbol{\Delta}$ " button is pressed.

OSD D/A

1. Press " VOL \boldsymbol{A} " button on the Service remote control unit. Then select OSD D/A display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit. Then choose OSD D/A=ANA.

AFC 2

1. Press " VOL $\boldsymbol{\Delta}$ " button on the Service remote control unit. Then select AFC 2 display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control. Then choose AFC $2=$ " NOR ".
9V
3. Press " VOL \boldsymbol{A} " button on the Service remote control unit. Then select 9 V display.
4. Press " $\mathrm{CH} \boldsymbol{\wedge} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit. Then choose 9V=OFF.

STEREO

1. Press " VOL \boldsymbol{A} " button on the Service remote control unit. Then select STEREO display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit. Then choose STEREO=OFF.
Note: There is no need to adjust C/D and VCO data values at this moment.

3-3. Setting for CONTRAST, COLOR and TINT data Values

General

1. Enter the Service mode. (See page 5-1)
2. Press " MENU " button on the Service remote control unit. Display changes " BRIGHT ", " CONTRAST ", " COLOR " and " TINT " cyclically when " MENU " button is pressed.

CONTRAST (CNT)

1. Press " MENU " button on the Service remote control unit. Then select " CONTRAST " (CNT) display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit so that the value of "CONTRAST " (CNT) becomes 92.

COLOR (CLR)

1. Press " MENU " button on the Service remote control unit. Then select " COLOR " (CLR) display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit so that the value of "COLOR " (CLR) becomes 58.

TINT (TNT)

1. Press " MENU " button on the Service remote control unit. Then select " TINT " (TNT) display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit so that the value of " TINT " (TNT) becomes 57 .
The following 2 adjustments are only required if the version of micro computer is 175-0.17.

V-TINT (V-TNT)

1. Press " MENU " button on the Service remote control unit. Then select " V-TINT " (V-TNT) display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit so that the value of " V-TINT" (V-TNT) becomes 57.

SHARP (SHARP)

1. Press " MENU " button on the Service remote control unit. Then select " SHARP " (SHARP) display.
2. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control unit and select "SHARP ON ".

Note: There is no need to adjust BRIGHTdata value at this moment.

4. $\mathrm{H} \mathrm{f}_{\mathrm{o}}$ Adjustment

Purpose: To get correct horizontal frequency.
Symptom of Misadjustment: If H fo adjustment is in correct, sqew distortion will appear on the screen.

Test Point	Adj. Point	Mode	Input
J303	CH A / / button ["H-ADJ"] MODE		---
Tape	M. EQ.	Spec.	
---	Frequency Counter	$15.734 \mathrm{kHz} \pm 300 \mathrm{~Hz}$	

Note: J303 --- Main CBA
Use Service remote control unit.

1. Connect Frequency Counter to J303 and ground.
2. Set the unit to the VIDEO mode which is located before CH 2 and no input is necessary. Enter the Service mode. (See Page 5-1)
3. Operate the unit for at least 20 minutes.
4. Press " 2 " button on the Service remote control unit and select H-ADJ Mode. (By pressing " 2 " button the display will change from TV AGC to H-ADJ)
5. Press " CH $\boldsymbol{\wedge} / \boldsymbol{\nabla}$ " button on the Service remote control unit so that the display will change " 0 "~" " ". At this moment, Choose the display from
" 0 " ~" 7 " when the Frequency Counter shows $15.734 \mathrm{kHz}+300 \mathrm{~Hz}$ or closer.
6. Turn the power off and on again. (Main Power button on the TV unit.)

5. VCO Adjustment

Purpose: To operate VCO correctly.
Symptom of Misadjustment: VCO does not work correctly and/or synchronization is faulty.

Test Point	Adj. Point	Mode	Input
--	--		No signal
Tape	M. EQ.	Spec.	
--	---	Green display	

Note: Use service remote control unit.

1. Disconnect the RF input and set the unit to Channel 4.
2. Enter the Service mode. (See Page 5-1)
3. Press " 3 " button on the Service remote control unit. The Auto VCO adjustment is started.
4. If the display color is changed from red to green, this adjustment is done.
5. Turn the Power off and on again. (Main power button on the TV unit.)

6. AGC Adjustment

Purpose: Set AGC (Auto Gain Control) Level.
Symptom of Misadjustment: AGC does not synchronize correctly when RF input level is too weak and picture distortion may occur if it is too strong.

Test Point	Adj. Point	Mode	Input
J302	$\mathrm{CH} \mathbf{A} / \nabla$ buttons	RF	Color Bar 67.25 MHz $60 \mathrm{~dB} \mu \mathrm{~V}$
Tape	M. EQ.	Spec.	
---	Pattern Generator DC Volt Meter	$+2.3 \pm 0.1 \mathrm{VDC}$ or $+2.5 \pm 0.1 \mathrm{VDC}$ by Tuner Type.	

Note: J302 --- Main CBA
Use Service remote control unit.

1. Enter the Service mode. (See Page 5-1) Then press number " 2 " button on the Service remote control unit.
2. Receive the Color Bar signal for channel 4 (67.25 MHz). (RF Input Level: $60 \mathrm{~dB} \mu \mathrm{~V}$)
3. If the tuner type number is TEDH9X203A, press the " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons so that the voltage of J302 becomes $+2.3 \pm 0.1 \mathrm{~V}$ DC.
4.

If the tuner type number is B8055AR, press the " CH A / $\boldsymbol{\nabla}$ " buttons so that the voltage of J302 becomes $+2.5 \pm 0.1 \mathrm{~V}$ DC.
5. Turn the Power off and on again. (Main power button on the TV unit.)

7. Black Level Adjustment

Purpose: Set Sub-bright Level

Symptom of Misadjustment: If Sub-brightness is incorrect, Proper brightness can not be obtained by adjusting the Bright ness Control.
Note: J502, J501 (GND) --- CRT CBA

1. Enter the Service mode. (See page 5-1).
2. Press " MENU " button on the Service remote control unit and select " BRT " mode. (Display changes " BRT ", " CNT ", " CLR " and " TNT " cyclically when MENU button is pressed).
3. Press " $\mathrm{CH} \mathbf{\Delta} / \boldsymbol{\nabla}$ " buttons on the Service remote control urit so that the value of "BRT " becomes 128.
4. Turn the power off and on again. (Main power button on the TV unit.)

8. C-Trap Adjustment

Purpose: To get minimum leakage of the color signal carier.
Symptom of Misadjustment: If C-Trap Adjustment is incorrect, stripes will appears on the screen.

Test Point	Adj. Point	Mode	Input
J502			
(Blue)	CH $\mathbf{~ J 5 0 1 ~} / \boldsymbol{\text { buttons }}$	RF	Color Bar
(GND)			
Tape	M. EQ.	Spec.	
---	Oscilloscope	----	

Note: J502, J501 --- CRT CBA
Use Service remote control unit.

1. Connect Oscilloscope to J502 and J501 (GND) .
2. Enter the Service mode. (See Page 5-1) Receive color bar signal from RF Input.
3. Press " 0 " button on the Service remote control unit and select C-TRP Mode.
4. Press " $\mathrm{CH} \boldsymbol{\triangle} /$ " " buttons on the 2 control unit so that the display will change " 0 ", " 1 ", " 2 " and " 3 ". Choose display " 0 ", " 1 ", " 2 " or " 3 " when B-Out (3.58 MHz) value becomes minimum on the oscilloscope reading.
5. Turn the power off and on again. (Main power button on the TV unit.)

9. V. Size Adjustment

Purpose: To obtain correct vertical width of screen image.
Symptom of Misadjustment: If V. Size is incorrect, vertical size of image on the screen may not be properly displayed.

Test Point	Adj. Point	Mode	Input
\ldots	Screen Control CH A / buttons [V-S] Mode	RF	Monoscope
Tape	M. EQ.	Spec.	
\cdots	Pattern Generator	$90 \pm 5 \%$	

Note: Use service remote control unit.

1. Operate the unit for at least 20 minutes.
2. Enter the Service mode. (See page 5-1)
3. Receive the Monoscope Pattern.
4. Press " 9 " button on the Service remote control unit and select " V-S " mode. (Display changes "V-S " and " V-P " cyclically when " 9 " button is pressed).
5. Press "CH $\boldsymbol{A} /{ }^{\text {" }}$ buttons on the Service remote control unit so that the monoscope pattern becomes $90 \pm 5 \%$ of display size and the circle is round.
6. Turn the power off and on again. (Main power button on the TV unit.)

10. V. Position Adjustment

Purpose: To obtain correct vertical height of screen image.
Symptom of misadjustment: If V. Position is incorrect, vertical height of image on the screen may not be properly displayed.

Test Point	Adj. Point	Mode	Input
---	Screen Control CH \mathbf{A} / ∇ buttons [V-P] Mode	RF	Monoscope
Tape	M. EQ.	Spec.	
--	Pattern Generator	$90 \pm 5 \%$	

Note: Use Service remote control unit

1. Operate the unit for at least 20 minutes.
2. Enter the Service Mode. (See page 5-1)
3. Receive the Monoscope Pattern.
4. Press " 9 " button on the Service remote control unit and select " V-P " mode. (Display change " V-S " and " V-P " cyclically when " 9 " button is pressed).
5. Press " $\mathrm{CH} \boldsymbol{\Delta} /{ }^{-}$" buttons on the Service remote control unit so that the top and bottom of the monoscope pattern become equal to each other.
6. Turn the Power off and on again. (Main power button on the TV unit.)

11. H. Position Adjustment

Purpose: To obtain correct horizontal position of screen image.
Symptom of Misadjustment: If H. Position is incorrect, horizontal position of image on the screen may not be properly displayed.

Test Point	Adj. Point	Mode	Input
---	Screen Control CH $/ \boldsymbol{\sim} /$ buttons $[$ H-P $]$ Mode	RF	Monoscope
Tape	M. EQ.	Spec.	
--	Pattern Generator	$90 \pm 5 \%$	

Note: Use Service remote control unit

1. Operate the unit for at least 20 minutes.
2. Enter the Service mode. (See page 5-1)
3. Receive the Monoscope Pattern.
4. Press " 8 " button on the remote control unit and select " H-P " mode.
5. Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\text { " }}$ buttons on the Service remote control unit so that the monoscope pattern becomes $90 \pm 5 \%$ of display size and the circle is round.
6. Turn the power off and on again. (Main power button on the TV unit.)

12. Cut-off Adjustment

Purpose: To adjust the beam current of R, G, B, and screen voltage.
Symptom of Misadjustment: White color may be reddish, greenish or bluish.

Test Point	Adj. Point	Mode	Input
---	Screen-Control $\mathrm{CH} \Delta / \nabla$ buttons	RF	Black Raster
Tape	M. EQ.		
---	Pattern Generator		erence below.
Figure			
		or	Fig. 2

Note: Screen Control FBT --- Main CBA
F.B.T=Fly Back Transformer

Use Service remote control unit

1. Degauss the CRT and allow CRT to operate for 20 minutes before starting the alignment.
2. Input the Black Raster Signal from RF Input.
3. Enter the Service mode. (See page 5-1)
4. Press " VOL \boldsymbol{A} " button on the Service remote control unit and select " C/D " mode. (Display changes " OSD D/A ", " C/D ", " V-TINT ", "VCO ", " 9 V " and " STEREO " cyclically when " VOL \mathbf{A} " button is pressed.) then press " 1 ". The display will momentarily show " CUT OFF R" ($\mathrm{R}=\mathrm{Red}$). Now there should be a horizontal line across the center of the picture tube. If needed gradually turn the screen control on the flyback, clockwise until the horizontal line appears. Adjust the Red Cut off by pressing the " $\mathrm{CH} \mathbf{\Delta} / \boldsymbol{\nabla}$ " buttons. Proceed to Step 5 when the Red Cut off adjustment is done.
5 . Press the " 2 "button. The display will momentarily show " CUT OFF G " (G=Green). Adjust the Green Cut off by pressing the " $\mathrm{CH} \boldsymbol{\wedge} / \boldsymbol{\nabla}$ " buttons. Proceed to step 6 when the Green Cut off adjustment is done.
5. Press the " 3 " button. The display will momentarily show " CUT OFF B" ($B=B / u e$). Adjust the Blue cut off by pressing the " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " buttons. When done with steps 4,5 and 6 the horizontal line should be pure white. If not, then attempt the Cut off adjustment again.

13. White Balance Adjustment

Purpose: To mix red, green and blue beams correctly for pure white.
Symptom of Misadjustment: White becomes bluish or reddish.

Test Point	Adj. Point	Mode	Input
Screen	CH $\boldsymbol{\sim} / \mathrm{V}$ buttons	RF	White Raster (APL 100\%)
Tape	M. EQ.		pec.
	Pattern Generator, Color analyzer		below
Figure			

Note: Use Service remote control unit

1. Operate the unit more than 20 minutes.
2. Face the unit to east. Degauss the CRT using Degaussing Coil.
3. Input the White Raster (APL 100\%).
4. Set the color analyzer to the CHROMA mode and after zero point calibration, bring the optical receptor to the center on the tube surface (CRT).
5. Enter the Service mode. Press "VOL $\boldsymbol{\Delta}$ " button on the Service remote control unit and select " C/D " mode. (Display changes " OSD D/A ", " C/D ", " V-TINT ", "VCO ", " 9V " and " STEREO " cyclically when " VOL $\boldsymbol{\Delta}$ " button is pressed.) then Press No. 8 button on the Service remote control Unit.
6. Press No. 4 button on the service remote control unit for Red adjustment. Press No. 5 button on the Service remote control unit for Blue adjustment.
7. In each color mode, Press " $\mathrm{CH} \boldsymbol{\Delta} / \boldsymbol{\nabla}$ " button to adjust the values of color.
8. Adjusting Red and Blue color so that the tempreture becomes $9200^{\circ} \mathrm{K}$ (x:286/y:294) $\pm 3 \%$.
9. At this time, Re-check that Horizontal line is white. If not, Re-adjust Cut-off Adjustment until the Horizontal Line becomes pure white.
10. Turn off and on again to return to normal mode. Receive APL 100\% white signal and Check Chroma temperature become $9200^{\circ} \mathrm{K}$ (x : $286 / y$: 294) $\pm 3 \%$.
Note: Confirm that Cut Off Adj. is correct after this adjustment, and attempt Cut Off Adj. if needed.

14. Sub-Brightness Adjustment

Purpose: To get proper brightness.
Symptom of Misadjustment: If Sub-Brightness is incorrect, proper brightness cannot be obtained by adjusting the Brightness Control.

Test Point	Adj. Point	Mode	Input
---	$\underset{\sim}{\mathrm{CH}}$	RF	IQW
Tape	M. EQ.		Spec.
---	Pattern Generator		ee below
Figure			
White			Black This bar just visible Fig. 4

Note: IQW Setup level --- 7.5 IRE
Use Service remote control unit

1. Enter the Service mode. (See page 5-1) Then input IQW signal from RF Input.
2. Press "MENU " button on the Service remote control unit and Select "BRT " mode. (Display changes " BRT ", " CNT ", " CLR ", and " TNT " cyclically when MENU button is pressed). Press " $\mathrm{CH} \mathbf{\Delta} / \boldsymbol{\nabla}$ " buttons so that the bar is just visible (See above figure).
3. Turn the power off and on again. (Main power button on the TV unit.)

15. Focus Adjustment

Purpose: Set the optimum Focus.
Symptom of Misadjustment: If Focus Adjustment is incorrect, blurred images are shown on the display.

Test Point	Adj. Point	Mode	Input
---	Focus Control	---	Monoscope
Tape	M. EQ.	Spec.	
---	Pattern Generator	See below.	

Note: FocusVR(FBT)-MainCBA FBT=FlyBackTransformer

1. Operate the unit more than 30 minutes
2. Face the unit to the East and degauss the CRT using a Degaussing Coil.
3. Input the Monoscope Pattern.
4. Adjust the Focus Control on the FBT to obtain a clear picture.

The following 2 adjustments normally are not attempted in the field. They should be done only when replacing the CRT then adjust as a preparation.

16. Purity Adjustment

Purpose: To obtain pure color.
Symptom of Misadjustment: If Color Purity Adjustment is incorrect, large areas of color may not be properly displayed.

Test Point	Adj. Point	Mode	Input
---	Deflection Yoke Purity Magnet	---	Red Color
Tape	M. EQ.		pec.
---	Pattern Generator		below.
Figure			
GREEN	$\left\{\begin{array}{l}\text { RED }\end{array}\right.$	\{	BLUE

Fig. 5

1. Set the unit facing east.
2. Operate the unit for over 30 minutes before adjusting.
3. Fully degauss the unit using an external degaussing coil.
4. Loosen the screw on the Deflection Yoke Clamper and pull the Deflection Yoke back away from the screen. (See Fig. 6)
5. Loosen the Ring Lock and adjust the Purity Magnets so that a red field is obtained at the center of the screen. Tighten Ring Lock. (See Fig. 5,6)
6. Slowly push the Deflection Yoke toward bell of CRT and set it where a uniform red field is obtained.
7. Tighten the clamp screw on the Deflection Yoke.

17. Convergence Adjustment

Purpose: To obtain proper convergence of red, green and blue beams.

Symptom of Misadjustment: If Convergence Adjustment is incorrect, the edge of white letters may have color edges.

Test Point	Adj. Point	Mode	Input
---	C.P. Magnet (RB), C.P. Magnet (RB-G), Deflection Yoke	---	Dot Pattern or Crosshatch
Tape	M. EQ.		Sec.
---	Pattern Generator		below.
Figures			

Fig. 6
DEFLECTION YOKE
C.P. MAGNET (RB)

R

-G
rot
B

C.B. MAGNET (RB-G)
R
$\downarrow \circ$
○ G $\downarrow \circ$ B

Fig. 7

RB
G

Fig. 8

1. Loosen the Ring Lock and align red with blue dots or Crosshatch at the center of the screen by rotating (RB) C.P. Magnets. (See Fig. 7)
2. Align red / blue with green dots at the center of the screen by rotating (RB-G) C.P. Magnet. (See Fig. 8)
3. Fix the C.P. Magnets by tightening the Ring Lock.
4. Remove the DY Wedges and slightly tilt the Deflection Yoke horizontally and vertically to obtain the best overall convergence.
5. Fix the Deflection Yoke by carefully inserting the DY Wedges between CRT and Deflection Yoke.

Sa audio signal

Power Supply Block Diagram

CAUTION!
Main Fuse (F601) supply circuit is used in this unit.
If Main Fuse (F601) is blown, check to see that all components in the power supply circuit are not defective before you connect the $A C$ plug to the $A C$ power supply. Otherwise it may cause some components in the power supply circuit to fail.

or ute-heplace fuse as marked.
ting fuse."

NOTE:
The voltage for parts in hot circuit is measured using hot GND as a common terminal.

SCHEMATIC DIAGRAMS / CBA'S AND TEST POINTS

Standard Notes

Many electrical and mechanical parts in this chassis have special characteristics. These characteristics often pass unnoticed and the protection afforded by them cannot necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts that have these special safety characteristics are identified in this manual and its supplements; electrical components having such features are identified by the mark " $\boldsymbol{A}^{\text {" inthe }}$ schematic diagram and the parts list. Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts that do not have the same safety characteristics as specified in the parts list may create shock, fire, or other hazards.

Note:

1. Do not use the part number shown on these drawings for ordering. The correct part number is shown in the parts list, and may be slightly
different or amended since these drawings were prepared.
2. All resistance values are indicated in ohms ($\mathrm{K}=10^{3}, \mathrm{M}=10^{6}$).
3. Resistor wattages are $1 / 4 \mathrm{~W}$ or $1 / 6 \mathrm{~W}$ unless otherwise specified.
4. All capacitance values are indicated in $\mu \mathrm{F}\left(\mathrm{P}=10^{-6} \mu \mathrm{~F}\right)$.
5. All voltages are DC voltages unless otherwise specifi

Note of Capacitors:

ML --- Mylar Cap. PP --- Metalized Film Cap. SC --- Semiconductor Cap. L --- Low Leakage type

Temperature Characteristics of Capacitors are noted with the following:

B $-- \pm 10 \% \quad \mathrm{CH}--0 \pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \quad \mathrm{SL}--+350 \sim-1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Tolerance of Capacitors are noted with the following:
Z --- +80~-20\%
Note of Resistors:
CEM --- Cement Res. MTL --- Metal Res. F --- Fuse Res.

Capacitors and transistors are represented by thefollowing symbols.

CBA Symbols

(Top View)

NPN Digital Transistor

(Top View)

Schematic Diagram Symbols

PNP Transistor

PNP Digital Transistor

LILIST OF CAUTION, NOTES, AND SYMBOLS USED IN THE

SCHEMATIC DIAGRAMS ON THE FOLLOWING PAGES:

1. CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD, REPLACE ONLY WITH THE

SAME TYPE FUSE.ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQES D'INCELE N'UTILISER QUE DES FUSIBLE DE MEMO TYPE.

RISK OF FIRE-REPLACE FUSE AS MARKED.

2. CAUTION:

Fixed Voltage (or Auto voltage selectable) power supply circuit is used in this unit.
If Main Fuse (F001) is blown, first check to see that all components in the power supply circuit are not defective before you connect the AC plug to the AC power supply. Otherwise it may cause some components in the power supply circuit to fail.

3. Note:

(1) Do not use the part number shown on the drawings for ordering. The correct part number is shown in the parts list, and may be slightly different or amended since the drawings were prepared.
(2) To maintain original function and reliability of repaired units, use only original replacement parts which are listed with their part numbers in the parts list section of the service manual.
4. Wire Connectors
(1)Prefix symbol "CN" means "connector" (can disconnect and reconnect).
(2) Prefix symbol "CL" means "wire-solder holes of the PCB" (wire is soldered directly).
5. Note: Mark "•" is a leadless (chip) component.
6. Voltage indications on the schematics are as shown below:

Plug the TV power cord into a standard AC outlet.

7. How to read converged lines
$\stackrel{1-\mathrm{D} 3}{4}$ Distinction Area
Line Number
(1 to 3 digits)
Examples:

1. "1-D3" means that line number "1" goes to area "D3".
2. "1-B1" means that line number "1" goes to area "B1".

3. Test Point Information

(1)Indicates a test point with a jumper wire across a hole in the PCB. $\square \rightarrow$: Used to indicate a test point with a component lead on foil side.
: Used to indicate a test point with no test pin.
: Used to indicate a test point with a test pin.

Main $2 / 2 \&$ CRT Schematic Diagram

because a hot chassis ground is present in the power SUPPLL CIRCUIT, AN ISOLATION TRANSFORMER MUST BE USED
ALSO, IV ORDERTO HVE THE ABILTT TO INCREASE THE INPUT ALLO, IN ORDER TO HAVE THE ABLLITY TO INCREASE THE INPUT
SLOWLY, WHENTROUBLESHOOTING THIS TYPE POWER SUPPLY CIRCUT, A VARIABLE I ISOLATION TRANSFORMER IS REQUIRED.

caution:
Fixed voltag

because a hot chassis ground is present in the power SUPPLY CIRCUIT, AN ISOLATION TRANSFORMER MUST BE USED. ALSO, IN ORDER TO HAVE THE ABILTY TO INCREASE THE INPUT
SLOWLY, WHEN TROUBLESHO AING THS TYPE POWER EUPPIY SLOWLY, WHEN TROUBLESHOOTING THIS TYPE POWER SUPPLY
CIRCUIT, A VARIABLE ISOLATIONTRANSFORMER IS REQURED.

WF3 1DIV: 2 V 20 2 sec
Q501 Base

WF4 1DIV: 2V 20 $\mu \mathrm{sec}$
Q 502 Base

Input: \quad NTSC Color Bar Signal (with 1 kHz Audio Signal)
INITIAL POSITION: Unplug unit from AC outlet for at least 5 minutes.

$$
\text { reconnect to } A C \text { outlet and then turn power on. }
$$

(Brightness---Center Color---Center Tint --- Center Contrast--Approx 70\%)

$\begin{array}{cc}\text { WF13 } & \text { 1DIV: } 20 \mathrm{~V} \text { 20 } 2 \mathrm{sec} \\ & \text { Q503 Collector }\end{array}$

WF14 1DIV: $20 \mathrm{~V} 20 \mu \mathrm{sec}$
Q 502 Collecto

WF15 1 DIV: $20 \mathrm{~V} 20 \mu \mathrm{sec}$ Q 501 Collector

WIRING DIAGRAM

IC PIN FUNCTIONS

IC101 (TV Micro Computer)

Pin No.	Signal Name	Function
1	H SYNC	Input For Horizontal Synchronize Signal
2	V SYNC	Input For Vertical Synchronize Signal
3		Not Used
4	EXT-H	Ext-H
5		Not Used
6	A-MUTE	Audio Mute
7		Not Used
8		Not Used
9		Not Used
10	RCV-IN	Input For Remote Control
11	SD	Detection SD signal
12	$1 \mathrm{kHz}-\mathrm{CHK}$	Power Supply Protection
13	P-ON-L	Output for P-ON-L
14	VCC	+5V
15	HLF	Filter for CCD
16	VHOLD	VHOLD
17	CVIN	Input for Video Signal
18	CV Vss	GND
19	XIN	Input for Oscillator
20	XOUT	Output for Oscillator
21	VSS	GND
22	VCC	+5V
23		Not Used
24		Not Used
25	RESET	RESET
26	PROTECT1	Power Supply Protection
27	$\begin{gathered} \text { PROTECT- } \\ 2 \end{gathered}$	Power Supply Protection
28	KEY IN	Key Input (Main)
29		Not Used
30	FACTORY	Factort Key Input
31	SDA	I2C-BUS Controller Interface (Data)
32	I2C-OPEN	White Balance Adjustment Judgement
33	SCL	I2C-BUS Controller Interface (Clock)

Pin No.	Signal Name	Function
34	SPOT- KILL	Spot Countermeasure
35	P-ON-H	Output for P-ON-H
36		Not Used
37	Not Used	
38	Not Used	
39	OSD-BLK	Picture Shut Down Output
40	OSD-B	Blue Output
41	OSD-G	Green Output
42	OSD-R	Red Output

IC301 (IFNideo/Chrominance/Defletion)

Pin No.	Signal Name	Function
1	IF IN 2	IF INput 2
2	IF-VCC1	IF-VCC 1
3	IF-VCC2	IF VCC 2
4	H. VCO-FB	H. VCO-FB
5	SCL	SCL
6	FBP- IN	FBP Input
7	H-OUT	H-Output
8	DEF GND 1	DEF GND 1
9	DEF GND 2	SDA GND 2
10	SDA	AFC Filter 1
11	AFC FILTER 1	INV. FBP-OUT
12	INV.	FBP-OUT

$\begin{array}{\|l\|l\|} \hline \text { Pin } \\ \text { No. } \end{array}$	Signal Name	Function
22	V RAMP	Filter for V Ramp
23	VC-VCC1	VC VCC 1
24	VC-vcc2	VC VCC 2
25	FSC-OUT	Freq. Sub carrier Output
26	SPOT- KILLER	Spot-Killer
27	FAST BLK	Fast Blanking Input
28	G-IN	OSD Green Input
29	V PULSE OUT	V-Pulse Output
30	R-IN	OSD Red Input
31	ACL/ABL	ACL/ABL
32	$\begin{gathered} \text { X-TAL } \\ 3.58 \\ \hline \end{gathered}$	Chroma Osc
33	8.7V OUT	8.7V Output
34	EXT-IN	External Input
35	$\begin{aligned} & \text { CHROMA } \\ & \text { APC } \\ & \text { FILTER } \end{aligned}$	Filter for CHROMA APC
36	TV-IN	TV Input
37	$\begin{gathered} \mathrm{VC} \\ \text { GND } 1 \end{gathered}$	VC GND 1
38	$\begin{gathered} \mathrm{VC} \\ \text { GND } 2 \end{gathered}$	VC GND 2
39	$\begin{gathered} \text { VC } \\ \text { GND } \end{gathered}$	VC GND 3
40	Y-SW OUT	Y-SW Output
41	5.7V OUT	5.7V Output
42	Reset	MCU Reset Output
43	INTERI GENT MONITOR	Interigent Monitor Out
44	Hi Vcc 1	Hi Vcc 1
45	Hi Vcc 2	Hi Vcc 2
46	$\begin{aligned} & \text { SW. REG. } \\ & \text { CONT. } \end{aligned}$	Switching Reg. Control Output
47	$\begin{gathered} \text { SIF } \\ \text { LIMITER- } \\ \text { IN } \end{gathered}$	SIF Limitter Input
48	$\begin{aligned} & \text { IF AGC } \\ & \text { FILTER } 2 \end{aligned}$	Filter for IF AGC
49	QIF OUT	QIF Output
50	$\begin{gathered} \text { AUDIO } \\ \text { OUT } \end{gathered}$	Audio Output
51	AUDIO BYPASS	Filter for Audio Bypass

Pin No.	Signal Name	Function
52	EXT AUDIO IN	External Audio In
53	FM DETECT OUT	RF Output
54	VIF VCO- FB	VIF VCO-FB
55	REG. Vcc IN	REG. Vcc Input
56	VIDEO APC FILTER	Filter for Video APC
57	VIDEO OUT	Video Out
58	IF GND 1	GND 1
59	IF GND 2	GND 2
60	AFT OUT	AFT Out
61	QIF IN	QIF Input
62	RF AGC OUT	RF AGC Out
63	IF AGC FILTER 1	Filter for IF AGC
64	IF IN 1	IF Input 1

EXPLODED VIEWS

Cabinet

:-........ See Electrical Parts List for parts with mark.
Some Ref. Number are not in sequence

PRODUCT SAFETY NOTE: Products marked with a the product safety notice in this service manual. Don't A have special characteristics important to safety. Be- degrade the safety of the product through improper serv fore replacing any of these components, read carefully icing

Ref. No.	Description	Part No.
A-1X	FRONT CABINET ASSEMBLY for Model ST413A	OEM201160
A-1X	FRONT CABINET ASSEMBLY for Model F413TA	OEM201179
A-1X	FRONT CABINET ASSEMBLY for Model 6413TA	OEM201181
A-1	front cabinet	OEM100962
A-3	CONTROL PLATE for Model ST413A	оЕм301316
A-3	CONTROL PLATE for Model F413TA	оем301321
A-3	CONTROL PLATE for Model 6413TA	OEM301277
A-2X	REAR CABINET ASSEMBLY for Model ST413A	OEM201161
A-2X	REAR CABINET ASSEMBLY for Model F413TA	OEM201180
A-2X	REAR CABINET ASSEMBLY for Model 6413TA	OEM201182
A-2	rear Cabinet	оемоооз46
A-4	RATING LABEL for Model ST413TA	OEM405397
A-4	RATING LABEL for Modelf413TA	OEM405437
A-4	RATING LABEL for Model 6413TA	OEM405439
B-1	TENSION SPRING B0080B0:EM40808	26WH006
B-2	CRT MOUNTING SCREW	OEM403023
B-13	CLOTH(15X10XT0.5)	OEM405038
L-8	SCREW P-TIGHT 4X18 BIND HEAD +	GBMP4180
L-13	SCREW P-TIGHT 3X12 2 IND HEAD+	GBMP3120
CLN551	CRT GND WIRE	WX1L7720-001
CLN801	WIRE ASSEMBLY	WX1L9200-001
L691	DEGAUSSING COIL F-017 or	LLBHooztM017
	DEGAUSSING COIL or	LLBH00ZTZ017
	degaussing coil avdgot3	LLBHOOZWR017
SP801	SPEAKER EUT7A21 or	DSD0808E6001
	SPEAKER S08.598 or	DSD0808X0001
	SPEAKER SOBJ72A1 or	DSD0808X0002
	SPEAKER S08J59A	1520614
PACKING		
S. 1	CARTON for Model ST443TA	OEM405398
S-1	CARTON for Model F413TA	OEM405438
S-1	CARTON for Model 6413TA	OEM405440
S-2	STYRFOAM TOP	OEM000349
S.3	STYFFOAM BOTTOM	OEMоооз50
S-4	SET SHEET :800×1500	OEM402369
S.5	SERIAL NO. LABEL	OEM405104
S.6	HOLD PAD	OEM405042
x-1	REMOTE CONTROL UNIT 130/ERC001/N0105UD for Model ST413TA	No105UD
x-1	REMOTE CONTROL UNIT 130/ERC001 N0108UD for Model F413TA	No108UD
$x-2$	DRY BATTERY R6P UM3 or	XBOM451GH001
	DRY BATTERY(SUNRISE) R6SSE/2S or	XBOM451MS002
	DRY BATTERY R6P/2S	XBOM451T000
x-3	ROD ANTENNA LT720UA:NTSC W/COO or	OEMN00673
	ROD ANTENNA	OEMN01599
x-4	OWNER'S MANUAL(E)/(S):ENGLISH/SPANISH for Model ST413A	OEMNO1598
x-4	OWNER'S MANUAL(E)/(S):ENGLISH/SPANISH for Model F413TA	OEMNO1606
x-4	OWNER'S MANUAL(E)/(S):ENGLISH/SPANISH for Model 6413TA	OEMNO1607
x-6	POLYETHYLENE BAG F8626B5	Z325350
X-9	RETURN STOP SHEET for Model ST413A/F413TA	OVM408869A
X-9	RETURN STOP SHEET for Model 6413TA	OVM408870A

991224

Ref. No.	Description	Part No.
CRT PARTS		
V501-1	C.P.MAGNET JH225-FN-00	xM04000BVOO
V501-2	RUBBER MAGNET 20X10X1. 2	XM05000BV001
V501-5	WEDGE FT-0010W or	XV10000T4001
	WEDGE DB25SR	XV1000009001
Note: HAS COUPLE OF SUBSTITUTIONAL PARTS AND EACH PART ALSO HAS MATCHIN G COMBINATION WITH L551 2. 1551 (DEFLECTION YOKE) HAS MATCHING COMBINATION WITH V501. PLEASE SEE TABLE 1 FOR DETALLS AND COMBINATION.		
V501 A	CRT(BARE+DY) A34AGT13X09 K or	TCRT190CP021
	CRT A34AGT $13 X$ or	TCRT190CP036
	CRT A34JLL.90X(W) or	TCRT 1900S015
	CRT A34KOW42X or	TCRT 1905M013
	CRT A34KPU02XX	TCRT 190GSO16
L551	DEFLECTION YOKE	See Table 1

Table 1 (V501 and L551 Combination)

V 501 CRT Type No.	V 501: CRT Part No.	L 551: Deflectio Yoke Part No.
A34AGT13X09 K	TCRT190CP021	V501, L551, , V501-1, V501-2 and V501-5 are included
A34AGT13X	TCRT190CP036	LLBY00ZMS011
A34JLL90X(W)	TCRT190QS015	LLBY00ZMS005
A34KQW42X	TCRT190SM013	LLBY00ZMS006 or LLBY0OZSY002or LLBY00ZSM004
A34KPU02XX	TCRT190GS016	LLBY00ZSY002or LLBY00ZMS003

Note: Purity and Convergence Adjustments must be performed following CRT replacement. Refer to Electrica Adjustment Instructions.

Note:
Please confirm CRT Type No. on the CRT Warning Label which is located on the CRT. Then See the Table 1 for V501 and L551 combination chart.
Please refer this CRT, Deflection Yoke combination char or parts order.

CRT Warning Label Location

ELECTRICAL PARTS LIST

PRODUCT SAFETY NOTE: Products marked with a A have special characteristics important to safety. Before replacing any of these components, read carefully the product safety notice in this service manual. Don't degrade the safety of the product through improper servicing.

MMA CBA

Ref. No.	Description	Part No.
	MMA CBA(MMA-283) for Model ST413A/F413TA MMA CBA (MMA-285) for Model 6413TA Consists of the following Main CBA CRT CBA	0ESA03364
0ESA03398		

Main CBA

Ref. No.	Description	Part No.
	Main CBA Consists of the following	---
CAPACITORS		
C2	CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CCD1JZS0F103
C3	CHIP CERAMIC CAP. SL J $56 \mathrm{pF} / 50 \mathrm{~V}$	CHE1JJBSL560
C4	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZT0F103
C5	ELECTROLYTIC CAP. $220 \mu \mathrm{~F} / 10 \mathrm{~V} \mathrm{M}$	CE1AMASTL221
C6	ELECTROLYTIC CAP. $4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL4R7
C108	ELECTROLYTIC CAP. $47 \mu \mathrm{~F} / 16 \mathrm{~V}$ M	CE1CMASTL470
C111	ELECTROLYTIC CAP. $47 \mu \mathrm{~F} / 16 \mathrm{~V}$ M	CE1CMASTL470
C112	ELECTROLYTIC CAP. $220 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CE1AMASTL221
C113	CHIP CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JZB0F103
C131	CHIP CERAMIC CAP. B K 220pF/50V	CHE1JKB0B221
C135	CERAMIC CAP.(AX) B K 220pF/50V	CCA1JKTOB221
C136	ELECTROLYTIC CAP. $4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL4R7
C143	CHIP CERAMIC CAP. F Z $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JZB0F104
C171	CHIP CERAMIC CAP. B K 220pF/50V	CHE1JKB0B221
C172	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL1R0
C173	FILM CAP.(P) $0.001 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{j}$ or	CA1J102MS029
	FILM CAP.(P) $0.001 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{~J}$ or	CMA1JJS00102
	*MYLAR CAP. $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ J TV or	CMB1JJS00102
	MYLAR CAP. $0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$ K	2250102 S
C176	CERAMIC CAP.(AX) F $Z 0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103
C301	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103
C302	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103
C303	ELECTROLYTIC CAP. $220 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CE1AMASTL221
C304	CERAMIC CAP.(AX) Y M $0.01 \mu \mathrm{~F} / 16 \mathrm{~V}$	CDA1CMTOY103
C311	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL1R0
C312	CHIP CERAMIC CAP. B K $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JKB0B103
C313	ELECTROLYTIC CAP. $4.7 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$	CE1JMASTL4R7
C332	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CE1AMASTL101
C334	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ or	CA1J1R0SP054
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M LL	CE1JMASLL010
C335	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103
C336	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{~V} \mathrm{M}$	CE1AMASTL101
C338	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103
C339	ELECTROLYTIC CAP. $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL100
C341	CHIP CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JZB0F103
C342	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103

NOTE: Parts that not assigned part numbers (------------) are not available.
Tolerance of Capacitors and Resistors are noted with the following symbols.

C......... $\pm 0.25 \%$	D......... $\pm 0.5 \%$	F......... $\pm 1 \%$
G........ $\pm 2 \%$	J......... $\pm 5 \%$	K........ $\pm 10 \%$
M........ $\pm 20 \%$	N........ $\pm 30 \%$	Z........ $+80 /-20 \%$

Ref. No.	Description	Part No.
C343	CHIP CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JZB0F103
C344	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL1R0
C345	CERAMIC CAP. CH J 47pF/50V	CCD1JJSCH470
C353	ELECTROLYTIC CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CE1JMASTLR10
	ELECTROLYTIC CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M for Model 64.13TA	CE1JMASTLOR1
C354	ELECTROLYTIC CAP. $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTLR47
C355	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL1R0
C356	CERAMIC CAP.(AX) Y N $0.015 \mu \mathrm{~F} / 6 \mathrm{~V}$	CDAOKNTOY153
C361	CERAMIC CAP.(AX) Y N $0.022 \mu \mathrm{~F} / 6 \mathrm{~V}$	CDAOKNTOY223
C363	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZT0F103
C364	CERAMIC CAP.(AX) F $Z 0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZT0F103
C365	CERAMIC CAP.(AX) F Z $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$	CCA1JZT0F104
C366	ELECTROLYTIC CAP. $470 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CE1AMASTL471
C367	ELECTROLYTIC CAP. $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL100
C369	CERAMIC CAP.(AX) Y N $0.022 \mu \mathrm{~F} / 6 \mathrm{~V}$	CDAOKNTOY223
C372	PCB JUMPER D0.6-P5.0	JW5.0T
C373	ELECTROLYTIC CAP. $2.2 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL2R2
C374	ELECTROLYTIC CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CE1JMASTLR10
	ELECTROLYTIC CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M for Model 6413TA	CE1JMASTLOR1
C375	CHIP CERAMIC CAP. B K $3300 \mathrm{pF} / 50 \mathrm{~V}$	CHE1JKB0B332
C376	CHIP CERAMIC CAP. B K $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JKB0B103
C378	CHIP CERAMIC CAP. B K $180 \mathrm{pF} / 50 \mathrm{~V}$	CHE1JKB0B181
C381	ELECTROLYTIC CAP. $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTLR47
C382	CHIP CERAMIC CAP. B K $22 \mathrm{pF} / 50 \mathrm{~V}$	CHE1JJBSL220
C383	ELECTROLYTIC CAP. $0.22 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTLR22
C387	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$	CE1JMASTLIR0
C388	FILM CAP. $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ or	CMA1JJS00473
	FILM CAP. $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ or	CA1J473MS029
	FILM CAP. $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ or	CMB1JJS00473
	MYLAR CAP. $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$	2250473S
C389	CERAMIC CAP.(AX) F Z $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$	CDA1EZTOF103
C393	ELECTROLYTIC CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{M}$ or	CETJMASTLR10
	ELECTROLYTIC CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTLOR1
C396	ELECTROLYTIC CAP. $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL100
C552	FILM CAP.(P) $0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{~J}$ or	CA1J104MS029
	FILM CAP.(P) $0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{~J}$ or	CMA1JJS00104
	FILM CAP.(P) $0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \mathrm{~J}$ TV or	CMB1JJS00104
	MYLAR CAP. $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$ K	2250104 S
C553	ELECTROLYTIC CAP. $2.2 \mu \mathrm{~F} / 50 \mathrm{~V}$ M LL H7 or	CA1J2R2SP018
	ELECTROLYTIC CAP. $2.2 \mu \mathrm{~F} / 50 \mathrm{~V}$ M LL H7	CE1JMASHL2R2
C554	ELECTROLYTIC CAP. $22 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTL220
C555	ELECTROLYTIC CAP. $47 \mu \mathrm{~F} / 35 \mathrm{~V}$ M	CE1GMASTL470
C556	ELECTROLYTIC CAP. $1000 \mu \mathrm{~F} / 35 \mathrm{~V}$ M	CE1GMZNTL102
C558	CHIP CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JZB0F103
C559	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 35 \mathrm{~V}$ M	CE1GMASTL101
C571 A	PP CAP. $0.33 \mu \mathrm{~F} / 200 \mathrm{~V} \mathrm{~J}$	CT2E334MS040
C574 A	ELECTROLYTIC CAP. $4.7 \mu \mathrm{~F} / 250 \mathrm{~V}$ M	CE2EMASTL4R7

*Mylar is a registered trademark of E. I. Du Pont de Nemours and Company.

Ref. No.	Description	Part No.
C577	FILM CAP.(P) $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ J or	CA1J103MS029
	FILM CAP.(P) $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ J or	CMA1JJS00103
	MYLAR CAP. $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ J TV or	CMB1JJS00103
	MYLAR CAP. $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ K	2250103 S
C578	ELECTROLYTIC CAP. $47 \mu \mathrm{~F} / 35 \mathrm{~V}$ M	CE1GMASTL470
C580 A	PP CAP. $0.0082 \mu \mathrm{~F} / 1.6 \mathrm{kV} \mathrm{J}$	СТЗС822MS039
C584	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 160 \mathrm{~V}$ M	CE2CMASTLIRO
C591 A	ELECTROLYTIC CAP. $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1.MMASTL100
C601 A	FILM CAP.(MP) $0.14 \mathrm{~F} / 250 \mathrm{~V}$ M or	CT2E104DC009
	ACROSS THE LINE CAPA 0.1 [$/$ /250V M	CT2E104MS035
C602	FILM CAP.(P) 0.047μ F/50V J or	CA1J473MS029
	FILM CAP.(P) 0.047μ F/50V J or	CMA1JJS00473
	FILM CAP.(P) $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ J TV or	CMB1JJS00473
	MYLAR CAP. $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ K	2250473S
C605 A	CERAMIC CAP. $0.01 \mu \mathrm{~F} / \mathrm{AC250V}$ or	CCD2EZAOF103
	CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 500 \mathrm{~V}$	CCD2JZDOF103
C606 A	CERAMIC CAP. 0.01 F/AC250V or	CCD2EZAOF103
	CERAMIC CAP. F Z $0.01 \mu \mathrm{~F} / 500 \mathrm{~V}$	CCD2JZD0F103
C609	CERAMIC CAP. B K 1000pF/2kV or	CA3D102MR030
	CERAMIC CAP. BK 1000pF/2kV or	CCD3DKD0B102
	CERAMIC CAP. $0.001 \mu \mathrm{~F} / 2 \mathrm{kV}$	CCD3DKP0B102
C610 A	ALMINIUM ELECTROLYTIC CAP150 μ F/200V or	CA2D151NC088
	ELECTROLYTIC CAPACITOR 150 $\mathrm{HF} / 200 \mathrm{~V}$	CA2D15156012
C611	FILM CAP.(P) $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ J or	CA1J473MS029
	FILM CAP.(P) 0.047μ F/50V J or	CMA1JJS00473
	FILM CAP.(P) $0.047 \mu \mathrm{~F} / 50 \mathrm{~V}$ J TV or	CMB1JJS00473
	MYLAR CAP. $0.047 \mu \mathrm{~F} / 50 \mathrm{VK}$	2250473S
C613	FILM CAP.(P) $0.14 \mathrm{~F} / 50 \mathrm{~V}$ J or	CA1J104MS029
	FILM CAP.(P) $0.14 \mathrm{~F} / 50 \mathrm{~V} \mathrm{~J}$ or	CMA1JJS00104
	FILM CAP.(P) $0.14 \mathrm{~F} / 50 \mathrm{~V} \mathrm{~J}$ TV or	CMB1JJS00104
	MYLAR CAP. $0.14 \mathrm{~F} / 50 \mathrm{VK}$	2250104 S
C642	PCB JUMPER D0.6-P10.0	JW10.0T
C643 A	SAFETY CAP. EM 4700pF/250V or	CCG2EMPOE472
	CERAMIC CAP. $0.0047 \mu \mathrm{~F}$ CS for Model ST413A/F413TA	CCG2HMN0F472
C643 A	SAFETY CAP. 4700pF/125V MX for Model 6413TA	CCF2BMAOF472
C651	CERAMIC CAP. LB 560pF/2kV or	CA3D561KG004
	CERAMIC CAP. BN 560PF/2kV	CCD3DKA0B561
C652	CERAMIC CAP. B K 470PF/1kV	CCDЗAKPOB471
C654	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CEIJMASTLIRO
C655	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M or	CE1JMASTL010
	ELECTROLYTIC CAP. $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTLIRO
C656	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 160 \mathrm{~V}$ M	CE2CMZPTL101
C657	ELECTROLYTIC CAP. $1000 \mu \mathrm{~F} / 35 \mathrm{~V}$ M	CE1GMZNTL102
C658	ELECTROLYTIC CAP. $470 \mu \mathrm{~F} / 16 \mathrm{~V}$ M	CE1CMASTL471
C661	CERAMIC CAP.(AX) F 20.01 FF/25V	CDA1EZT0F103
C681	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CE1AMASTL101
C682	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CEIAMASTL101
C684	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{~V}$ M	CE1AMASTL101
C685	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{VM}$	CE1AMASTLT01
C686	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 10 \mathrm{VM}$	CEIAMASTL101
C701	CERAMIC CAP.(AX) B K 100PFF50V for Model 6413 TA .	CCA1JKTOB101
C803	ELECTROLYTIC CAP. $220 \mu \mathrm{~F} / 16 \mathrm{~V}$ M	CEICMASTL221
C804	ELECTROLYTIC CAP. $0.22 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CE1JMASTLR22
$C 805$C808	CERAMIC CAP.(AX) X K 5600pF/16V	CDA1CKTOX562
	CERAMIC CAP. $0.47 \mu \mathrm{~F} / 50 \mathrm{~V}$ M	CA1J474TU014
C 808 $\mathrm{C809}$	CHIP CERAMIC CAP, F Z $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	CHE1JZB0F103
C810	ELECTROLYTIC CAP. $100 \mu \mathrm{~F} / 16 \mathrm{~V}$ M	CE1CMZNTL102
CONNECTORS		
CN301	CONNECTOR BASE 5P TUC-P05P-B1	J3TUA05TG001
CN571 A	CONNECTOR BASE 5P RTB-1.5-5P or	J3RTC05JG001
	CONNECTOR BASE 5P TV-50P-05-V2 or	J3TVC05TG002
	CONNECTOR BASE 5P W-P3005-02	1730812
CN691 A	CONNECTOR BASE 2P RTB-1.5-2P or	J3RTC02JG001

Ref. No.	Description	Part No.
CN801	CONNECTOR BASE 2P TV-50P-02-V2 STRAIGHT CONNECTOR BASE or STRAIGHT PIN HEADER 2P 173981-2	J3TVC02TG002 J383C02UG002 1770258
DIODES		
D101	SWITCHING DIODE 1N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D102	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D161 A	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D309	ZENER DIODE MTZJT-776.8B	QDTBOMTZJ6R8
D313	ZENER DIODE MTZJT-776.8B	QDTBOMTZ ${ }^{\text {d6R8 }}$
D321	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SSIT6TPA7	1SS176T
D322	SWITCHING DIODE 1 144148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D323	SWITCHING DIODE 1 144148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D331	ZENER DIODE MTZJT-778.2B	QDTBOMTZJ8R2
D371	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D396	ZENER DIODE MTZJT-778.2B	QDTBOMTZJ8R2
D397	SWITCHING DIODE 1 144148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SSI76TPA7	1SS176T
D552	RECTIFIER DIODE ERA15-02	AERA1502****
D571 A	RECTIFIER DIODE ERA22-02 or	QDPZOERA2202
	RECTIFIER DIODE 10ELS2	QDQZ0010ELS2
D572	RECTIFIER DIODE ERA22-02 or	QDPZ0ERA2202
	RECTIFIER DIODE 10ELS2	QDQZ0010ELS2
D573	RECTIFIER DIODE ERA22-02 or	QDPZ0ERA2202
	RECTIFIER DIODE 10ELS2	QDQZ0010ELS2
D584	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D591 A	ZENER DIODE MTZJT-7736B	QDTB00MTZJ36
D592	ZENER DIODE MTZJT-776.8B	QDTBOMTZJ6R8
D596 A	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D605 A	RECTIFIER DIODE ERB12-06	QDQZOERB1206
D606 A	RECTIFIER DIODE ERB12-06	QDQZOERB1206
D607 A	RECTIFIER DIODE ERB12-06	QDQZOERB1206
D608 A	RECTIFIER DIODE ERB12-06	QDQZOERB1206
D609	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D611	ZENER DIODE MTZJT-7715B	QDTB00MTZJ15
D613	ZENER DIODE MTZJT-773.0B	QDTBOMTZJ3R0
D614	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133
	DIODE 1SS176TPA7	1SS176T
D615	SWITCHING DIODE 1 N4148 T-77	QDTZ001N4148
D651 A	FAST RECOVERY DIODE ERC25-06 or	QDQZOERC2506
	RECOVERY DIODE ERC18-04	QDZZOERC1804
D652 A	FAST RECOVERY DIODE ERB44-02	QDPZOERB4402
D653 A	FAST RECOVERY DIODE ERB44-02	QDPZOERB4402
D654	SWITCHING DIODE 1 N4148 or	NDTZ001N4148
	SWITCHING DIODE 1SS133(T-77) or	QDTZ001SS133

Ref. No.	Description	Part No.	Ref. No.	Description	Part No.
	CHIP RES. $1 / 8 \mathrm{~W} 0 \Omega$	RRX8JB6Z0000		CARBON RES. $1 / 6 \mathrm{~W}$ J 100Ω	RCX6JATZ0101
R11	PCB JUMPER D0.6-P5.0	JW5.0T	R304	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$ or	RCX4JATZ0222
R101	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$ or	RRXAJB6Z0222		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$	RCX6JATZ0222
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$	RRX8.JB6Z0222	R305	CARBON RES. $1 / 4 \mathrm{WJ} 100 \Omega$ or	RCX4JATZ0101
R102	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 1.8 \mathrm{k} \Omega$ or	RRXAJB6Z0182		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 1.8 \mathrm{k} \Omega$	RRX8JB6Z0182	R306	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
R103	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$ or	RRXAJB6Z0332		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$	RRX8.JB6Z0332	R308	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.7 \mathrm{k} \Omega$ or	RCX4JATZ0272
R104	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$ or	RRXAJB6Z0472		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 2.7 \mathrm{k} \Omega$	RCX6JATZ0272
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$	RRX8JB6Z0472	R310	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
R105	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 8.2 \mathrm{k} \Omega$ or	RRXAJB6Z0822		CARBON RES. $1 / 6 \mathrm{~W}$ J 100Ω	RCX6JATZ0101
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 8.2 \mathrm{k} \Omega$	RRX8JB6Z0822	R311	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 6.8 \mathrm{k} \Omega$ or	RCX4JATZ0682
R108	CHIP RES. $1 / 10 \mathrm{WJ} 100 \Omega$ or	RRXAJB6Z0101		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 6.8 \mathrm{k} \Omega$	RCX6JATZ0682
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \Omega$	RRX8JB6Z0101	R312	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$ or	RCX4JATZ0222
R109	CHIP RES. $1 / 10 \mathrm{WJ} 10 \mathrm{k} \Omega$ or	RRXAJB6Z0103		CARBON RESS. $1 / 6 \mathrm{~W} \mathrm{j} 2.2 \mathrm{k} \Omega$	RCX6JȦTZ0222
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RRX8JB6Z0103	R313	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RCX4JATZ02२3
R110	CHIP RES. $1 / 10 \mathrm{~W} 0 \Omega$ or	RRXAZB6Z0000		CARBON RES. 1/6W J 22k Ω	RCX6JATZ0223
	CHIP RES. $1 / 8 \mathrm{~W} 0 \Omega$	RRX8.JB6Z0000	R321	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$ or	RCX4JATZ0222
R112	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$	RCX6JATZ0222
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101	R322	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$ or	RCX4JATZ0222
R121	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$ or	RCX4JATZ0472		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$	RCX6JATZ0222
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$	RCX6JATZ0472	R323	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$ or	RCX4JATZ0222
R122	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$ or	RCX4JATZ0472		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 2.2 \mathrm{k} \Omega$	RCX6JATZ0222
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$	RCX6JATZ0472	R324	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
R123	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$ or	RCX4JATZ0472		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$	RCX6JATZ0472	R325	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
R124	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$ or	RCX4JATZ0472		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$	RCX6JATZ0472	R326	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
R125	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 560 \Omega$ or	RCX4JATZ0561		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 560 \Omega$	RCX6JATZ0561	R328	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
R126	CARBON RES. $1 / 4 \mathrm{~W}$ J 560Ω or	RCX4JATZ0561		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 560 \Omega$	RCX6JATZ0561	R329	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 470 \Omega$ or	RCX4JATZ0471
R127	CHIP RES. $1 / 10 \mathrm{~W}$ J 560Ω or	RRXAJB6Z0561		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 470 \Omega$	RCX6JATZ0471
	CHIP RES. $1 / 8 \mathrm{~W}$ J 560Ω	RRX8JB6Z0561	R331	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$ or	RCX4JATZ0102
R128	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 1.5 \mathrm{k} \Omega$ or	RRXAJB6Z0152		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$	RCX6JATZ0102
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 1.5 \mathrm{k} \Omega$	RRX8.IB6Z0152	R333	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RRXAJB6Z0223
R133	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$ or	RRXAJB6Z0332		CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$	RRX8JB6Z0223
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$	RRX8.IB6Z0332	R338	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 470 \Omega$ or	RCX4JATZ0471
R134	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$ or	RRXAJB6Z0472		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 470 \Omega$	RCX6JATZ0471
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 4.7 \mathrm{k} \Omega$	RRX8JB6Z0472	R343	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 15 \mathrm{k} \Omega$ or	RCX4JATZ0153
R135	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$ or	RRXAJB6Z0332		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 15 \mathrm{k} \Omega$	RCX6JATZ0153
	CHIP RES. $1 / 8 \mathrm{~W} \downharpoonleft 3.3 \mathrm{k} \Omega$	RRX8JB6Z0332	R344	CHIP RES. 1/10W J 120k Ω or	RRXAJB6Z0124
R136	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RRXAJB6Z0103		CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 120 \mathrm{k} \Omega$	RRX8JB6Z0124
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RRX8JB6Z0103	R346	CHIP RES. $1 / 10 \mathrm{~W} 0 \Omega$ or	RRXAZB6Z0000
R137	CHIP RES. 1/10W 0Ω or	RRXAZB6Z0000		CHIP RES. 1/8W 0Ω	RRX8.JB6Z0000
	CHIP RES. $1 / 8 \mathrm{~W} 0 \Omega$	RRX8.JB6Z0000	R353	CARBON RES. $1 / 4 \mathrm{~W} J 1 \mathrm{M} \Omega$ or	RCX4JATZ0105
R138	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RRXAJB6Z0223		for Model 6413PTA	RCX6JATZ0105
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$	RRX8JB6Z0223	R354	CARBON RES. $1 / 4 \mathrm{~W} J 1 \mathrm{M} \Omega$ or	RCX4JATZ0105
R151	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RRXAJB6Z0101		CARBON RES. $1 / 6 \mathrm{~W} \downharpoonleft 1 \mathrm{M} \Omega$	RCX6JATZ0105
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \Omega$	RRX8JB6Z0101	R355	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 6.8 \mathrm{k} \Omega$ or	RCX4JATZ0682
R152	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RRXAJIB6Z0101		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 6.8 \mathrm{k} \Omega$	RCX6JATZ0682
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \Omega$	RRX8JJ66Z0101	R361	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
R164	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 6.8 \mathrm{k} \Omega$ or	RCX4JATZ0682		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 6.8 \mathrm{k} \Omega$	RCX6JATZ0682	R363	CHIP RES. $1 / 10 \mathrm{~W} J 100 \Omega$ or	RRXAJB6Z0101
R168	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RCX4JATZ0223		CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \Omega$	RRX8JB6Z20101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$	RCX6JATZ0223	R364	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
R170	CHIP RES. $1 / 10 \mathrm{~W}$ J 100Ω or	RRXAJB6Z0101		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \Omega$	RRX8JB6Z0101	R365	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
R171	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$ or	RRXAJB6Z0102		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$	RRX8JB6Z0102	R366	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RRXAJB6Z0101
R175	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 150 \mathrm{k} \Omega$ or	RRXAJB6Z0154		CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \Omega$	RRX8JB6Z0101
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 150 \mathrm{k} \Omega$	RRX8.JB6Z0154	R368	PCB JUMPER D0.6-P5.0	JW5.0T
R176	PCB JUMPER D0.6-P5.0	JW5.0T	R369	CHIP RES. $1 / 10 \mathrm{~W} 0 \Omega$ or	RRXAZB6Z0000
R181	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZO101		CHIP RES. $1 / 8 \mathrm{~W} 0 \Omega$	RRX8JB6Z0000
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101	R372	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
R182	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101		CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103

Ref. No.	Description	Part No.
R373	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RCX4JATZ0103
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RCX6JATZ0103
R374	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$ for Model 6413TA	RCX6JATZ0101
R376	CHIP RES. $1 / 10 \mathrm{~W} 0 \Omega$ or	RRXAZB6Z0000
	CHIP RES. $1 / 8 \mathrm{~W} 0 \Omega$	RRX8.JB6Z0000
R377	CHIP RES. $1 / 10 \mathrm{~W}$ J 150Ω or	RRXAJB6Z0151
	CHIP RES. 1/8W J 150Ω	RRX8.JB6Z0151
R378	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 470 \Omega$ or	RCX4JATZ0471
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 470 \Omega$	RCX6JATZ0471
R381	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 470 \Omega$ or	RRXAJB6Z0471
	CHIP RES. $1 / 8 \mathrm{~W}$ J 470Ω	RRX8JB6Z0471
R385	CHIP RES. $1 / 10 \mathrm{~W} 0 \Omega$ or	RRXAZB6Z0000
	CHIP RES. $1 / 8 \mathrm{~W} 0 \Omega$	RRX8JB6Z0000
R387	CARBON RES. $1 / 4 \mathrm{WJ}$ 10M OHM	RCX4JATZ0106
R391	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~W} 100 \Omega$ or	RCX4JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
R392	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
R393	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$ or	RRXAJB6Z0102
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$	RRX8JB6Z0102
R394	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{j} 220 \Omega$ or	RCX4JATZ0221
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 220 \Omega$	RCX6JATZ0221
R396	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 220 \Omega$ or	RCX4JATZ0221
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 220 \Omega$	RCX6JATZ0221
R397	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 220 \Omega$ or	RCX4JATZ0221
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 220 \Omega$	RCX6JATZ0221
R551	PCB JUMPER D0.6-P5.0	JW5.0T
R552 A	CHIP RES. $1 / 10 \mathrm{~W} \downharpoonleft 3.3 \mathrm{k} \Omega$ or	RRXAJB6Z0332
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$	RRX8JB6Z0332
R553	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 1.5 \mathrm{k} \Omega$ or	RRXAJB6Z0152
	CHIP RES. 1/8W J $1.5 \mathrm{k} \Omega$	RRX8JB6Z0152
R555	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RRXAJB6Z0223
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$	RRX8JB6Z0223
R556	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 1.8 \mathrm{k} \Omega$ or	RCX4JATZ0182
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 1.8 \mathrm{k} \Omega$	RCX6JATZ0182
R557	CHIP RES. $1 / 10 \mathrm{~W}$ J 470Ω or	RRXAJB6Z0471
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 470 \Omega$	RRX8.JB6Z0471
R558	CHIP RES. $1 / 10 \mathrm{~W}$ J $22 \mathrm{k} \Omega$ or	RRXAJB6Z0223
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$	RRX8.JB6Z0223
R559	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$ or	RRXAJB6Z0102
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$	RRX8JB6Z0102
R560	CHIP RES. 1/10W J $3.3 \mathrm{k} \Omega$ or	RRXAJB6Z0332
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{k} \Omega$	RRX8JB6Z0332
R561	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$ or	RRXAJB6Z0103
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 10 \mathrm{k} \Omega$	RRX8JB6Z0103
R562	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 2.2 \Omega$	RCX4JATZ02R2
R566	FUSE RES. $1 / 4 \mathrm{~W} \mathrm{~J} 4.7 \Omega$ or	RFX44R7KA007
	FUSE RES. $1 / 4 \mathrm{~W} \mathrm{~J} 4.7 \Omega$	RFX44R7UB002
R568	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 4.7 \Omega$ or	RRXAJB6Z04R7
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 4.7 \Omega$	RRX8.JB6Z04R7
R572	CARBON RES. $1 / 4 \mathrm{~W} J 470 \Omega$ or	RCX4JATZ0471
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 470 \Omega$	RCX6JATZ0471
R574 A	FIXED METAL OXIDE FILM RES. $2 \mathrm{~W} \mathrm{~J} 470 \Omega$ or	RN02471KE007
	METAL RESISTOR $2 \mathrm{~W} \mathrm{~J} 470 \Omega$ or	RN02471UB001
	METAL RESISTOR $2 \mathrm{~W} \mathrm{~J} 470 \Omega$	RN02471ZU001
R576	CHIP RES. $1 / 10 \mathrm{WJ} 1 \mathrm{k} \Omega$ or	RRXAJB6Z0102
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 1 \mathrm{k} \Omega$	RRX8.JB6Z0102
R577	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 560 \Omega$ or	RRXAJB6Z0561
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 560 \Omega$	RRX8.JB6Z0561
R579	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 47 \Omega$ or	RCX4JATZ0470
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 47 \Omega$	RCX6JATZ0470
R580	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 47 \Omega$ or	RCX4JATZ0470
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 47 \Omega$	RCX6JATZ0470
R581	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 1 \Omega$	RCX4JATZ01R0
R582	CARBON RES. $1 / 4 \mathrm{WJ} 1 \Omega$	RCX4JATZ01R0

Ref. No.	Description	Part No.
R583 A	METAL FILM RES.(STRAIGHT) $1 \mathrm{~W} \mathrm{~J} 1.8 \Omega$ or	RN011R8KE009
	METAL FILM RES.(STRAIGHT) $1 \mathrm{~W} \mathrm{~J} 1.8 \Omega$ or	RN011R8ZU001
	METAL FLLM RES.(STRAIGHT) $1 \mathrm{~W} \mathrm{~J} 1.8 \Omega$ or	RN011R8UB001
	METAL FILM RES.(STRAIGHT) $1 \mathrm{~W} \mathrm{~J} 1.0 \Omega$	RN011R8DP003
R584	CARBON RES. $1 / 4 \mathrm{WJ} 1 \mathrm{k} \Omega$ or	RCX4JATZ0102
	CARBON RES. $1 / 6 \mathrm{WJ} 1 \mathrm{k} \Omega$	RCX6JATZ0102
R585	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 8.2 \mathrm{k} \Omega$ or	RCX4JATZ0822
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 8.2 \mathrm{k} \Omega$	RCX6JATZ0822
R586	CHIP RES. $1 / 10 \mathrm{WJ} 100 \mathrm{k} \Omega$ or	RRXAJB6Z0104
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$	RRX8JB6Z0104
R587	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$ or	RCX4JATZ0104
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$	RCX6JATZ0104
R588	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$ or	RCX4JATZ0104
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$	RCX6JATZ0104
R591	CHIP RES. $1 / 10 \mathrm{WJ} 100 \mathrm{k} \Omega$ or	RRXAJB6Z0104
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} \mathrm{~J}$ J0k Ω	RRX8JB6Z0104
R592 A	CHIP RES. 1/10W J $180 \mathrm{k} \Omega$ or	RRXAJB6Z0184
	CHIP RES. $1 / 8 \mathrm{~W} \downharpoonleft 180 \mathrm{k} \Omega$	RRX8JB6Z0184
R593	CHIP RES. $1 / 10 \mathrm{WJ} 100 \mathrm{k} \Omega$ or	RRXAJB6Z0104
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$	RRX8JB6Z0104
R594	CHIP RES. $1 / 10 \mathrm{~W} J 68 \mathrm{k} \Omega$ or	RRXAJB6Z0683
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 68 \mathrm{k} \Omega$	RRX8JB6Z0683
R595	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 47 \mathrm{k} \Omega$ or	RCX4JATZ0473
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 47 \mathrm{k} \Omega$	RCX6JATZ0473
R597	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 33 \mathrm{k} \Omega$ or	RRXAJB6Z0333
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 33 \mathrm{k} \Omega$	RRX8JB6Z0333
R598	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 47 \mathrm{k} \Omega$ or	RCX4JATZ0473
	CARBON RES. $116 \mathrm{~W} \mathrm{~J} 47 \mathrm{k} \Omega$	RCX6JATZ0473
R599 A	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RRXAJB6Z0223
	CHIP RES. $1 / 8 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$	RRX8JB6Z0223
R601 A	CEMENT RES. $5 W \mathrm{~K} 1.2 \Omega$ or	RW051R2DP005
	CEMENT RESISTOR $5 W \mathrm{~K} 1.2 \Omega$ or	RW051R2PG001
	CEMENT RESISTOR SQZ05S1R2J	RW051R2Y4001
R602	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 820 \mathrm{k} \Omega$ or	RCX4JATZ0824
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 820 \mathrm{k} \Omega$	RCX6JATZ0824
R603	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 820 \mathrm{k} \Omega$ or	RCX4JATZ0824
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 820 \mathrm{k} \Omega$	RCX6JATZ0824
R604	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$ or	RCX4JATZO104
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \mathrm{k} \Omega$	RCX6JATZ0104
R606	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 10 \Omega$ or	RCX4JATZ0100
	CARBON RES. $1 / 6 \mathrm{WJ} 10 \Omega$	RCX6JATZ0100
R607	PCB JUMPER D0.6-P5.0	JW5.0T
R608	PCB JUMPER D0.6-P5.0	JW5.0T
R611	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 270 \Omega$ or	RCX4JATZ0271
	CARBON RES. $116 \mathrm{~W} \mathrm{~J} 270 \Omega$	RCX6JATZ0271
R612	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 270 \Omega$ or	RCX4JATZ0271
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 270 \Omega$	RCX6JATZ0271
R613 A	CEMENT RES. $5 W \mathrm{~W} 0.47 \Omega$ or	RW05R47DP005
	CEMENT RESISTOR $5 W \mathrm{~W} 0.47 \Omega$	RW05R47PG001
R614	CARBON RES. $1 / 4 \mathrm{~W}$ J 680Ω or	RCX4JATZ0681
	CARBON RES. $116 \mathrm{~W} \mathrm{~J} 680 \Omega$	RCX6JATZ0681
R615	PCB JUMPER D0.6-P5.0	JW5.0T
R616	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 390 \Omega$ or	RCX4JATZ0391
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 390 \Omega$	RCX6JATZ0391
R617	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 47 \Omega$ or	RCX4JATZ0470
	CARBON RES. $1 / 6 \mathrm{~W}$ J 47Ω	RCX6JATZ0470
R641 A	CARBON RES. $1 / 2 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{M} \Omega$ or	RCX2335A4001
	ANTI-SURGE RESISTOR $1 / 2 \mathrm{~W} \mathrm{~J} 3.3 \mathrm{M} \Omega$	RMX2335KA011
R651	FIXED METAL OXIDE FLLM RES. $1 \mathrm{~W} \mathrm{~J} 12 \mathrm{k} \Omega$ or	RN01123DP003
	FIXED METAL OXIDE FLLM RES. $1 \mathrm{~W} \mathrm{~J} 12 \mathrm{k} \Omega$ or	RN01123KE007
	METAL RESISTOR $1 \mathrm{~W} \mathrm{~J} 12 \mathrm{k} \Omega$ or	RN01123UB001
	METAL RESISTOR $1 \mathrm{~W} \mathrm{~J} 12 \mathrm{k} \Omega$	RN01123ZU001
R652	CHIP RES. $1 / 10 \mathrm{~W} \mathrm{~J} 22 \mathrm{k} \Omega$ or	RRXAJB6Z0223
	CHIP RES. $118 \mathrm{WJ} 22 \mathrm{k} \Omega$	RRX8JB6Z0223
R653	CHIP RES. $1 / 10 \mathrm{WJ} 15 \mathrm{k} \Omega$ or	RRXA, IB6Z0153
	CHIP RES. $118 \mathrm{~W} \mathrm{~J} 15 \mathrm{k} \Omega$	RRX8.IB6Z0153

Ref. No.	Description	Part No.
R521	CHIP RES. 1/10W J 560Ω or	RRXAJB6Z0561
	CHIP RES. $1 / 8 \mathrm{~W}$ J 560Ω	RRX8JB6Z0561
R531	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
R532	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
R533	CARBON RES. $1 / 4 \mathrm{~W} \mathrm{~J} 100 \Omega$ or	RCX4JATZ0101
	CARBON RES. $1 / 6 \mathrm{~W} \mathrm{~J} 100 \Omega$	RCX6JATZ0101
MISCELLANEOUS		
	PARALLEL WIRE L=250 4P	WX1L1000-001
	CRT SOCKET ISMSO2S	JSCC220PK003
	WIRE HOLDER 4P HWT0200-04 or	XW0HT04C7001
	WIRE HOLDER 4P 51048-0400	XW01D04NF001
WH501B	WIRE HOLDER 4P HWT0200-04 or	XW0HT04C7001
	WIRE HOLDER 4P 51048-0400	XW01D04NF001

